Finite element density functional calculations for light molecules using a cusp factor to mitigate the Coulomb potential

  • Moritz BraunEmail author
  • Kingsley Onyebuchi Obodo
Regular Article


Finite element calculations have been performed in Cartesian coordinates using the density functional approach for a number of small molecules. In order to aid convergence of the orbitals and total energies a suitable cusp factor was employed, such that the resulting effective potential is non-singular at all nuclei. The resulting total energies and densities were compared with those obtained using the Gaussian basis set package NWChem [M. Valiev et al., Comput. Phys. Commun. 181, 1477 (2010)] and excellent agreement was found.

Graphical abstract


Computational Methods 


  1. 1.
    M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    W.J. Hehre, R.F. Stewart, J.A. Pople, J. Chem. Phys. 51, 2657 (1969) ADSCrossRefGoogle Scholar
  3. 3.
    G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001) CrossRefGoogle Scholar
  4. 4.
    V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    R. Alizadegan, K.J. Hsia, T.J. Martinez, J. Chem. Phys. 132, 034101 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    M. Braun, J. Comput. Appl. Math. 270, 100 (2014) MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Blaha, K. Schwarz, G.K.H Madsen, D. Vasnicka, J. Luitz,WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Technical University Vienna, Austria, 2001) Google Scholar
  8. 8.
    M. Braun, K.O. Obodo, Comput. Math. Appl. 74, 35 (2017) MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, L.F.X. Andrade, M.A.L. Marques, E. Gross, A. Rubio, Phys. Status Solidi B 243, 2465 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    S. Ghosh, P. Suryanarayana, Comput. Phys. Commun. 212, 03 (2016) Google Scholar
  11. 11.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    M. Braun, J. Comput. Appl. Math. 236, 4840 (2012) CrossRefGoogle Scholar
  13. 13.
    C. Geuzaine, J.-F. Remacle, Int. J. Numer. Methods Eng. 79, 1309 (2009) CrossRefGoogle Scholar
  14. 14.
    S. Lehtola, C. Steigemann, M.J.T. Oliveira, M.A.L. Marques, SoftwareX 7, 1 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5, inArchive of Numerical Software (2015), Vol. 3 Google Scholar
  16. 16.
    O. Čertík, J.E. Pask, J. Vackář, Comput. Phys. Commun. 184, 1777 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980) ADSCrossRefGoogle Scholar
  18. 18.
    G. Strang, G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall series in automatic computation (Prentice-Hall, Upper Saddle River, New Jersey, USA, 1973) Google Scholar
  19. 19.
    P.A.M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South AfricaPretoriaSouth Africa
  2. 2.HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University (NWU)PotchefstroomSouth Africa

Personalised recommendations