Advertisement

Predicting the elastic, phonon and thermodynamic properties of cubic HfNiX (X = Ge and Sn) Half Heulser alloys: a DFT study

  • Bamidele I. AdetunjiEmail author
  • Paul O. Adebambo
  • Muyiwa K. Bamgbose
  • Abolore A. Musari
  • Gboyega A. AdebayoEmail author
Regular Article
  • 16 Downloads

Abstract

In this work, details density functional theory calculations were performed to obtain the electronic, elastic, phonon and thermodynamic properties of half-Heusler alloys HfNiX (X = Ge and Sn). The PBE functional as implemented in Projector augmented-wave (PAW) pseudopotentials was used for all the calculations. From our results, we reported the energy gap of 0.38 eV for HfNiSn and 0.61 eV for HfNiGe indicating the semiconductor property of these compounds. Also, the mechanical and elastical stabilities of these compounds were confirmed from the comparison of the elastic constants of these compounds with conditions for stabilities. Although the phonon dispersion curves for HfNiGe and HfNiSn are similar with splitting at the Γ point, the shift in their frequency was as a result of the mass different in Ge and Sn. The phonon dispersion curve predicts the dynamically stabilities of these half-Heusler alloys. From the thermodynamic properties of these compounds, it was revealed that these compounds are soft at low temperature, but at a high temperature they tend to be hard materials. Our calculations showed that these two compounds are mechanically, elastically and dynamically stable as cubic half-Heusler alloys.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J. Yang, G.P. Meisner, L. Chen, Appl. Phys. Lett. 85, 1140 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    G.S. Nolas, J. Poon, M. Kanatzidis, MRS Bull. 31, 199 (2006) CrossRefGoogle Scholar
  3. 3.
    W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, T. Tritt, Nanomaterials 2, 379 (2012) CrossRefGoogle Scholar
  4. 4.
    K. Kirievsky, Y. Gelbstein, D. Fuks, J. Solid State Chem. 203, 247 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. Jeffrey Snyder, X. Zhao, T. Zhu, Adv. Funct. Mater. 23, 5123 (2013) CrossRefGoogle Scholar
  6. 6.
    G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinsky et al., Energy Environ. Sci. 7, 4070 (2014) CrossRefGoogle Scholar
  7. 7.
    C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6, 8144 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    Q. Qiu, Y. Liu, K. Xia, T. Fang, J. Yu, X. Zhao, T. Zhu, Adv. Energy Mater. 9, 1803447 (2019) CrossRefGoogle Scholar
  9. 9.
    M.J. Winiarski, K. Bilińska, Intermetallics 108, 55 (2019) CrossRefGoogle Scholar
  10. 10.
    S.R. Culp, S. Joseph Poon, N. Hickman, T.M Tritt, J. Blumm, Appl. Phys. Lett. 88, 042106 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    S. Bhattacharya, M.J. Skove, M. Russell, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, N. Thadhani, Phys. Rev. B 77, 184203 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    D.F. Zou, S.H. Xie, Y.Y. Liu, J.G. Lin, J.Y. Li, J. Appl. Phys. 113, 193705 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    S.-H. Wang, H.-M. Cheng, R.-J. Wu, W.-H. Chao, Thin Solid Films 518, 5901 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Downie, D.A. MacLaren, J.-W.G. Bos, J. Mater. Chem. A 2, 6107 (2014) CrossRefGoogle Scholar
  15. 15.
    A. Page, A. Van der Ven, P.F.P. Poudeu, C. Uher, J. Mater. Chem. A 4, 13949 (2016) CrossRefGoogle Scholar
  16. 16.
    S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    K. Gałazka, S. Populoh, W. Xie, S. Yoon, G. Saucke, J. Hulliger, A. Weidenkaff, J. Appl. Phys. 115, 183704 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    Me. Rittiruam, A. Yangthaisong, T. Seetawan, J. Appl. Phys. 124, 175101 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    F. Hamioud, A.A. Mubarak, Int. J. Mod. Phys. B 31, 1750170 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    G. Rogl, A. Grytsiv, M. Gürth, A. Tavassoli, C. Ebner, A. Wünschek, S. Puchegger, V. Soprunyuk, W. Schranz, E. Bauer et al., Acta Mater. 107, 178 (2016) CrossRefGoogle Scholar
  21. 21.
    Md.M. Mallick, S. Vitta, AIP Conf. Proc. 1731, 110027 (2016) CrossRefGoogle Scholar
  22. 22.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  23. 23.
    A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014) CrossRefGoogle Scholar
  24. 24.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    S. Baroni, P. Giannozzi, E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010) CrossRefGoogle Scholar
  27. 27.
    M. Palumbo, A. Dal Corso, J. Phys.: Condens. Matter 29, 395401 (2017) Google Scholar
  28. 28.
    A. Dal Corso, J. Phys: Condens. Matter 28, 075401 (2016) ADSGoogle Scholar
  29. 29.
    M. Zahedifar, P. Kratzer, Phys. Rev. B 97, 035204 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    A. Khein, D. Joseph Singh, C.J. Umrigar, Phys. Rev. B 51, 4105 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    Q.Y. Xue, H.J. Liu, D.D. Fan, L. Cheng, B.Y. Zhao, J. Shi, Phys. Chem. Chem. Phys. 18, 17912 (2016) CrossRefGoogle Scholar
  33. 33.
    H. Fu, X.F. Li, W.F. Liu, Y. Ma, T. Gao, X. Hong, Intermetallics 19, 1959 (2011) CrossRefGoogle Scholar
  34. 34.
    S.F. Pugh, The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 823 (1954) CrossRefGoogle Scholar
  35. 35.
    A. Page, C. Uher, P.F. Poudeu, A. Van der Ven, Phys. Rev. B 92, 174102 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    S.N.H. Eliassen et al., Phys. Rev. B 95, 045202 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    G.J. Conibeer, D. König, M.A. Green, J.F. Guillemoles, Thin Solid Films 516, 6948 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    A.T. Petit, P.L. Dulong, Annu. Rev. Phys. Chem. 10, 395 (1819) Google Scholar
  39. 39.
    Z.-L. Liu et al., J. Phys.: Condens. Matter 21, 095408 (2009) ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bamidele I. Adetunji
    • 1
    Email author
  • Paul O. Adebambo
    • 2
  • Muyiwa K. Bamgbose
    • 3
  • Abolore A. Musari
    • 4
  • Gboyega A. Adebayo
    • 2
    Email author
  1. 1.Department of Physical SciencesBells University of TechnologyOtaNigeria
  2. 2.Department of PhysicsFederal University of AgricultureAbeokutaNigeria
  3. 3.Department of PhysicsAugustine UniversityIlara-EpeNigeria
  4. 4.Physics with Eletronics Unit, Department of Science Laboratory Technology Moshood Abiola PolytechnicsAbeokutaNigeria

Personalised recommendations