Advertisement

Stochastic Higgins model with diffusion: pattern formation, multistability and noise-induced preference

  • Irina BashkirtsevaEmail author
  • Alexander Pankratov
Regular Article
  • 18 Downloads

Abstract

A distributed variant of the Higgins glycolytic model with the diffusion is considered. A parametric description of the zone with Turing instability is found. By computer simulations, a process of the spatial pattern formation is studied. The multistability of the distributed Higgins model was discovered and the variety of patterns and their amplitude characteristics were described. In the quantitative analysis of the transient processes with varying spatial modality, the method of harmonic coefficients is used. For the stochastic variant of this model with multiplicative random disturbances, noise-induced transitions between coexisting patterns and the phenomenon of “stochastic preference” are discussed.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.M. Turing. Philos. Trans. R. Soc. London Ser. B, Biol. Sci. 237, 37 (1952) ADSCrossRefGoogle Scholar
  2. 2.
    G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977) Google Scholar
  3. 3.
    R. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge University Press, Cambridge, 2006) Google Scholar
  4. 4.
    M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009) Google Scholar
  5. 5.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, (Springer, Science & Business Media, Berlin, 2012) Google Scholar
  6. 6.
    T. Kohsokabe, K. Kaneko, Europhys. Lett. 116, 48005 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    M. Meixner, A. De Wit, S. Bose, E. Scholl, Phys. Rev. E 55, 6690 (1997) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968) ADSCrossRefGoogle Scholar
  9. 9.
    R. Peng, M. Wang, J. Math. Anal. Appl. 309, 151 (1964) CrossRefGoogle Scholar
  10. 10.
    G. Gambino, M.C. Lombardo, M. Sammartino, V. Sciacca, Phys. Rev. E 88, 042925 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    E. Ekaterinchuk, L. Ryashko, AIP Conf. Proc. 1773, 060005 (2016) CrossRefGoogle Scholar
  12. 12.
    M. Baurmann, T. Gross, U. Feudel, J. Theor. Biol. 245, 220 (2007) CrossRefGoogle Scholar
  13. 13.
    J. Smith-Roberge, D. Iron, T. Kolokolnikov, Euro. J. Appl. Math. 30, 196 (2019) CrossRefGoogle Scholar
  14. 14.
    S. van der Stelt, A. Doelman, G. Hek, J.D.M. Rademacher, J. Nonlinear Sci. 23, 39 (2013) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer, Berlin, 1984) Google Scholar
  16. 16.
    A.S. Mikhailov, A.Yu. Loskutov, Foundations of Synergetics II: Chaos and Noise, (Springer, Berlin, 1996) Google Scholar
  17. 17.
    D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Ecol. Modell. 213, 449 (2008) CrossRefGoogle Scholar
  18. 18.
    O.A. Chichigina, A.A. Dubkov, D. Valenti, B. Spagnolo, Phys. Rev. E 84, 021134 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    I. Bashkirtseva, L. Ryashko, Physica A 491, 28 (2018) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. La Barbera, B. Spagnolo, Physica A 314, 120 (2002) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Fiasconaro, D. Valenti, B. Spagnolo, Acta Phys. Pol. B 35, 1491 (2004) ADSGoogle Scholar
  22. 22.
    D. Valenti, A. Fiasconaro, B. Spagnolo, Acta Phys. Pol. B 35, 1481 (2004) ADSGoogle Scholar
  23. 23.
    P. D’Odorico, F. Laio, L. Ridolfi, Geophys. Res. Lett. 33, L19404 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    V.O. Kharchenko, D.O. Kharchenko, Eur. Phys. J. B 85, 383 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Morales, I. Fernandez-Cervantes, R. Agustin-Serrano, A. Anzo, M.P. Sampedro, Eur. Phys. J. B 89, 182 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Lavrova, S. Bagyan, T. Mair, M.J.B. Hauser, L. Schimansky-Geier, BioSystems 97, 127 (2009) CrossRefGoogle Scholar
  27. 27.
    J. Zhou, J. Shi, IMA J. Appl. Math. 80, 1703 (2015) MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Atabaigi, A. Barati, H. Norouzi, Comput. Math. Appl. 75, 4361 (2018) MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Higgins, Proc. Natl. Acad. Sci. U.S.A. 51, 989 (1964) ADSCrossRefGoogle Scholar
  30. 30.
    K.W. Morton, Numerical Solution of Partial Differential Equations: An Introduction (Cambridge University Press, Cambridge, 2005) Google Scholar
  31. 31.
    W.E. Schiesse, The Numerical Method of Lines (Academic Press, Cambridge, 1991) Google Scholar
  32. 32.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Ryashko, Chaos 28, 033602 (2018) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations