Advertisement

Study of edge states and conductivity in spin-orbit coupled bilayer graphene

  • Priyanka SinhaEmail author
  • Saurabh BasuEmail author
Regular Article

Abstract

We present an elaborate and systematic study of the conductance properties of a zigzag bilayer graphene nanoribbon modeled by a Kane-Mele (KM) Hamiltonian. The interplay of the Rashba and the intrinsic spin-orbit couplings with the edge states, electronic band structures, charge and spin transport are explored in details. We have analytically derived the conditions for the edge states for a bilayer KM nanoribbon and show how these modes decay for lattice sites inside the bulk. It is particularly interesting to note that for a finite-size ribbon an even number of zigzag ribbon hosts a finite energy gap at the Dirac points, while the odd ones do not. This asymmetry is present both in presence and absence of a bias voltage that may exist between the layers. The interlayer Rashba spin-orbit coupling, along with the intralayer intrinsic spin-orbit and intralayer Rashba spin-orbit couplings seem to destroy the quantum spin Hall (QSH) phase where the QSH phase is identified by the presence of a conductance plateau (of magnitude 4e2h) in the vicinity of zero Fermi energy. The plateau is sensitive to the values of the spin-orbit coupling parameters. Further, the spin polarized conductance data reveal that a bilayer KM ribbon is found to be more efficient for spintronic applications compared to a monolayer graphene. Finally, a quick check with experiments is done via computing the effective mass of electrons.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigoreva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006) CrossRefGoogle Scholar
  6. 6.
    X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett. 101, 096802 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    E.-J. Kan, Z. Li, J. Yang, J.G. Hou, Appl. Phys. Lett. 91, 243116 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    X. Lin, J. Ni, Phys. Rev. B 84, 075461 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Falḱo, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006) CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lan, A.A. Balandin, Nat. Mater. 9, 555 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Balandin, Nat. Mater. 10, 569 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    M. Neek-Amal, F.M. Peeters, Phys. Rev. B 81, 235421 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Carbon 49, 4511 (2011) CrossRefGoogle Scholar
  17. 17.
    P.R. Wallace, Phys. Rev. 71, 622 (1947) ADSCrossRefGoogle Scholar
  18. 18.
    E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216801 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    E.W. Hill, A.K. Geim, K.S. Novoselov, F. Schedin, P. Blake, IEEE Trans. Magn. 42, 2694 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    M. Nishioka, A.M. Goldman, Appl. Phys. Lett. 90, 252505 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    N. Tombros, C. Józsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    W.H. Wang, K. Pi, Y. Li, Y.F. Chiang, P. Wei, J. Shi, R.K. Kawakami, Phys. Rev. B 77, 020402 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    Y.G. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    C. Weeks, J. Hu, J. Alicea, M. Franz, R. Wu, Phys. Rev. X 1, 021001 (2011) Google Scholar
  32. 32.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    W.F. Tsai, C.Y. Huang, T.R. Chang, H. Lin, H.T. Jeng, A. Bansil, Nat. Commun. 4, 1500 (2013) ADSCrossRefGoogle Scholar
  36. 36.
    X. Wang, P. Wang, G. Bian, T.C. Chiang, Europhys. Lett. 3, 115 (2016) Google Scholar
  37. 37.
    J. Ding, Z.H. Qiao, W.X. Feng, Y.G. Yao, Q. Niu, Phys. Rev. B 84, 195444 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    H.B. Zhang, C. Lazo, S. Blügel, S. Heinze, Y. Mokrousov, Phys. Rev. Lett. 108, 056802 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    F. Guinea, New J. Phys. 12, 083063 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    W. Yao, S.A. Yang, Q. Niu, Phys. Rev. Lett. 102, 096801 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    Z. Qiao, H. Jiang, X. Li, Y. Yao, Q. Niu, Phys. Rev. B 85, 115439 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    W. Li, R. Tao, J. Phys. Soc. Jpn. 81, 024704 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    Z. Qiao, X. Li, W.-K. Tse, H. Jiang, Y. Yao, Q. Niu, Phys. Rev. B 87, 125405 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    H. Pan, X. Li, Z. Qiao, C.-C. Liu, Y. Yao, S.A. Yang, New J. Phys. 16, 123015 (2014) ADSCrossRefGoogle Scholar
  45. 45.
    Z.H. Qiao, W.K. Tse, H. Jiang, Y.G. Yao, Q. Niu, Phys. Rev. Lett. 107, 256801 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    R. van Gelderen, C.M. Smith, Phys. Rev. B 81, 125435 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    S. Das Sarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) ADSCrossRefGoogle Scholar
  49. 49.
    K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999) ADSCrossRefGoogle Scholar
  50. 50.
    K. Wakabayashi, M. Sigrist, M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    E.V. Castro, N.M.R. Peres, J.M.B. Lopes dos Santos, A.H. Castro Neto, F. Guinea, Phys. Rev. Lett. 100, 026802 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    F.J. dos Santos, D.A. Bahamon, R.B. Muniz, K. McKenna, E.V. Castro, J. Lischner, A. Ferreira, Phys. Rev. B 98, 081407(R) (2018) ADSCrossRefGoogle Scholar
  53. 53.
    P. Sinha, S. Ganguly, S. Basu, Physica E 103, 314 (2018) ADSCrossRefGoogle Scholar
  54. 54.
    Y. Li, E. Zhang, B. Gong, S. Zhang, J. Nanomater. 2011, 364897 (2011) Google Scholar
  55. 55.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957) CrossRefGoogle Scholar
  56. 56.
    R. Landauer, Philos. Mag. 21, 863 (1970) ADSCrossRefGoogle Scholar
  57. 57.
    C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C: Solid State Phys. 4, 916 (1971) ADSCrossRefGoogle Scholar
  58. 58.
    D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981) ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) Google Scholar
  60. 60.
    P.H. Chang, F. Mahfouzi, N. Nagaosa, B.K. Nikolic, Phys. Rev. B 89, 195418 (2014) ADSCrossRefGoogle Scholar
  61. 61.
    C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16, 063065 (2014) ADSCrossRefGoogle Scholar
  62. 62.
    H. Xu, T. Heinzel, I.V. Zozoulenko, Phys. Rev. B 80, 045308 (2009) ADSCrossRefGoogle Scholar
  63. 63.
    Q. Zhang, K.S. Chan, J. Li, Phys. Chem. Chem. Phys. 19, 6871 (2017) CrossRefGoogle Scholar
  64. 64.
    Q. Zhang, Z. Lin, K.S. Chan, Appl. Phys. Lett. 102, 142407 (2013) ADSCrossRefGoogle Scholar
  65. 65.
    K. Zou, X. Hong, J. Zhu, Phys. Rev. B 84, 085408 (2011) ADSCrossRefGoogle Scholar
  66. 66.
    A.Z. Alzahrani, G.P. Srivastava, Braz. J. Phys. 39, 694 (2009) CrossRefGoogle Scholar
  67. 67.
    J. Wang, R. Zhao, M. Yang, Z. Liu, Z. Liu, J. Chem. Phys. 138, 084701 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations