Skip to main content
Log in

Optimal control theory for quantum electrodynamics: an initial state problem

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In conventional quantum optimal control theory, the parameters that determine an external field are optimised to maximise some predefined function of the trajectory, or of the final state, of a matter system. The situation changes in the case of quantum electrodynamics, where the degrees of freedom of the radiation field are now part of the system. In consequence, instead of optimising an external field, the optimal control question turns into a optimisation problem for the many-body initial state of the combined matter-photon system. In the present work, we develop such an optimal control theory for quantum electrodynamics. We derive the equation that provides the gradient of the target function, which is often the occupation of some given state or subspace, with respect to the control variables that define the initial state. We choose the well-known Dicke model to study the possibilities of this technique. In the weak coupling regime, we find that Dicke states are the optimal matter states to reach Fock number states of the cavity mode with large fidelity, and vice versa, that Fock number states of the photon modes are the optimal states to reach the Dicke states. This picture does not prevail in the strong coupling regime. We have also considered the extended case with more than one mode. In this case, we find that increasing the number of two-level systems allows reaching a larger occupation of entangled photon targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Brumer, M. Shapiro,Principles of the Quantum Control of Molecular Processes (John Wiley & Sons, New York, 2003)

  2. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  3. D.E. Kirk,Optimal Control Theory. An Introduction (Dover Publications, Inc., New York, 1998)

  4. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  5. K. Rojan, D.M. Reich, I. Dotsenko, J.-M. Raimond, C.P. Koch, G. Morigi, Phys. Rev. A 90, 023824 (2014)

    Article  ADS  Google Scholar 

  6. S. Deffner, J. Phys. B: At. Mol. Opt. Phys. 47, 145502 (2014)

    Article  ADS  Google Scholar 

  7. J.L. Allen, R. Kosut, J. Joo, P. Leek, E. Ginossar, Phys. Rev. A 95, 042325 (2017)

    Article  ADS  Google Scholar 

  8. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  9. B.M. Garraway, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 369, 1137 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Werschnik, E.K.U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007)

    Article  ADS  Google Scholar 

  12. A.P. Peirce, M.A. Dahleh, H. Rabitz, Phys. Rev. A 37, 4950 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.H. Tersigni, P. Gaspard, S.A. Rice, J. Chem. Phys. 93, 1670 (1990)

    Article  ADS  Google Scholar 

  14. A. Castro, J. Werschnik, E.K.U. Gross, Phys. Rev. Lett. 109, 153603 (2012)

    Article  ADS  Google Scholar 

  15. Q. Sun, R.-B. Wu, T.-S. Ho, H. Rabitz, arXiv:1612.03988 [quant-ph] (2016)

  16. M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  17. M. Tavis, F.W. Cummings, Phys. Rev. 188, 692 (1969)

    Article  ADS  Google Scholar 

  18. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  19. B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  Google Scholar 

  20. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  Google Scholar 

  21. D. Meschede, H. Walther, G. Müller, Phys. Rev. Lett. 54, 551 (1985)

    Article  ADS  Google Scholar 

  22. J.M. Raimond, P. Goy, M. Gross, C. Fabre, S. Haroche, Phys. Rev. Lett. 49, 117 (1982)

    Article  ADS  Google Scholar 

  23. G.S. Agarwal, J. Mod. Opt. 45, 449 (1998)

    Article  ADS  Google Scholar 

  24. K. Härkönen, F. Plastina, S. Maniscalco, Phys. Rev. A 80, 033841 (2009)

    Article  ADS  Google Scholar 

  25. J.M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P.J. Leek, A. Blais, A. Wallraff, Phys. Rev. Lett. 103, 083601 (2009)

    Article  ADS  Google Scholar 

  26. M. França Santos, E. Solano, R.L. de Matos Filho, Phys. Rev. Lett. 87, 093601 (2001)

    Article  ADS  Google Scholar 

  27. P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 88, 143601 (2002)

    Article  ADS  Google Scholar 

  28. K.R. Brown, K.M. Dani, D.M. Stamper-Kurn, K.B. Whaley, Phys. Rev. A 67, 043818 (2003)

    Article  ADS  Google Scholar 

  29. J. Zhang, J. Wang, T. Zhang, J. Opt. Soc. Am. B 29, 1473 (2012)

    Article  ADS  Google Scholar 

  30. M. Hofheinz, E.M. Weig, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, J.M. Martinis, A.N. Cleland, Nature 454, 310 (2008)

    Article  ADS  Google Scholar 

  31. T.J. Barnea, G. Pütz, J.B. Brask, N. Brunner, N. Gisin, Y.-C. Liang, Phys.Rev. A 91, 032108 (2015)

    Article  ADS  Google Scholar 

  32. C. Wu, C. Guo, Y. Wang, G. Wang, X.-L. Feng, J.-L. Chen, Phys. Rev. A 95, 013845 (2017)

    Article  ADS  Google Scholar 

  33. S.J. van Enk, Phys. Rev. A 72, 064306 (2005)

    Article  ADS  Google Scholar 

  34. A. Drezet, Phys. Rev. A 74, 026301 (2006)

    Article  ADS  Google Scholar 

  35. S.J. van Enk, Phys. Rev. A 74, 026302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Castro, E.K.U. Gross, J. Phys. A: Math. Theor. 47, 025204 (2014)

    Article  ADS  Google Scholar 

  37. J. Flick, M. Ruggenthaler, H. Appel, A. Rubio, Proc. Natl. Acad. Sci. 112, 15285 (2015)

    Article  ADS  Google Scholar 

  38. V.G. Boltyanskiĭ, R.V. Gamkrelidze, L.S. Pontryagin, Dokl. Akad. Nauk SSSR 110, 7 (1956)

    MathSciNet  Google Scholar 

  39. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko,The Mathematical Theory of Optimal Processes (John Wiley & Sons, New York, 1962)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the project planification, calculations, interpretation, and manuscript preparation.

Corresponding author

Correspondence to Alberto Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, A., Appel, H. & Rubio, A. Optimal control theory for quantum electrodynamics: an initial state problem. Eur. Phys. J. B 92, 223 (2019). https://doi.org/10.1140/epjb/e2019-100263-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100263-2

Keywords

Navigation