Advertisement

Effect of bromine deficiency on large elastic moduli of alpha-phase diisopropyl ammonium bromide (α-DIPAB) molecular crystals

  • Ahmad AlsaadEmail author
  • Nabil Alaqtash
  • Ali Al Kadhim
  • Renat F. Sabirianov
  • Ahmad Ahmad
  • Issam A. Qattan
  • Mohammad-Ali H. Al-Akhras
Regular Article

Abstract

Elastic stiffness moduli were studied using dispersion-corrected density functional theory. The elastic stiffness moduli of α-DIPAB molecular crystals are found to be strongly anisotropic, with exceptionally high values of ~55 GPa. The magnitude of elastic stiffness modulus is strongly correlated with the relative orientation between the underlying hydrogen-bonding networks of DIPA molecules (“stitched” together by Br ions). These values of elastic stiffness modulus are remarkably high and suggest the design of hydrogen bond networks as a route for rational design of ultra-stiff molecular solids. Furthermore, Young’s modulus of α-DIPAB was found to attain extremely large value of as large as 50 GPa along certain crystallographic directions, while Br-deficient DIPAB has reduced Young’s modulus ( ~18 GPa). Anisotropy of Young’s modulus in α-DIPAB is very large with values below 40% of its maximum along specific spatial directions (and even lower in Br-deficient crystals). α-DIPAB and Br-deficient DIPAB show very different directionality of Young’s modulus due to the change in H-Br bond network upon Br deficiency. Additionally, Poisson’s ratio is strongly anisotropic as well with values ranging between a maximum of 0.4 for certain crystallographic directions and about 0.25 for other directions indicating the directionality of bonding in α-DIPAB. DIPAB systems are brittle based on the ratio between bulk and sheer elastic constants. Thus, DIPAB should be used as an element of composite materials to be used in thin-film flexible electronic application.

Graphical abstract

Keywords

Computational Methods 

References

  1. 1.
    L. Pan, G. Liu, H. Li, S. Meng, L. Han, J. Shang, B. Chen, A.E. Platero-Prats, W. Lu, X. Zou, J. Am. Chem. Soc. 136, 17477 (2014) CrossRefGoogle Scholar
  2. 2.
    O. Sato, Nat. Chem. 8, 644 (2016) CrossRefGoogle Scholar
  3. 3.
    J. Scott, Science 315, 954 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    S. Horiuchi, Y. Tokura, Nat. Mater. 7, 357 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    A. Gruverman, B.J. Rodriguez, C. Dehoff, J. Waldrep, A. Kingon, R. Nemanich, J. Cross, Appl. Phys. Lett. 87, 082902 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    R. Xu, S. Liu, Nat. Mater. 14, 79 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    J. Wu, C. Fan, G. Xue, T. Ye, S. Liu, R. Lin, H. Chen, H.L. Xin, R.G. Xiong, H. Li, Adv. Mater. 27, 4476 (2015) CrossRefGoogle Scholar
  8. 8.
    H.-Y. Ye, S.-H. Li, Y. Zhang, L. Zhou, F. Deng, R.-G. Xiong, J. Am. Chem. Soc. 136, 10033 (2014) CrossRefGoogle Scholar
  9. 9.
    A. Batra, M. Aggarwal, M.E. Edwards, A. Bhalla, Ferroelectrics 366, 84 (2008) CrossRefGoogle Scholar
  10. 10.
    A. Stroppa, S. Picozzi, Phys. Chem. Chem. Phys. 12, 5405 (2010) CrossRefGoogle Scholar
  11. 11.
    S. Chen, P. Ying, L. Wang, G. Wei, F. Gao, J. Zheng, M. Shang, Z. Yang, W. Yang, T. Wu, NPG Asia Mater. 7, e157 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    W. Zhang, R.-G. Xiong, Chem. Rev. 112, 1163 (2011) CrossRefGoogle Scholar
  13. 13.
    J. Li, Y. Liu, Y. Zhang, H.-L. Cai, R.-G. Xiong, Phys. Chem. Chem. Phys. 15, 20786 (2013) CrossRefGoogle Scholar
  14. 14.
    M. Zirkl, A. Sawatdee, U. Helbig, M. Krause, G. Scheipl, E. Kraker, P.A. Ersman, D. Nilsson, D. Platt, P. Bodö, Adv. Mater. 23, 2069 (2011) CrossRefGoogle Scholar
  15. 15.
    R. Parashkov, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, Proc. IEEE 93, 1321 (2005) CrossRefGoogle Scholar
  16. 16.
    J.S. Chang, A.F. Facchetti, R. Reuss, IEEE J. Emerg. Selected Topics Circ Syst. 7, 7 (2017) ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    K. Gao, C. Liu, Z. Cui, J. Zhu, H.-L. Cai, X. Wu, CrystEngComm 17, 2429 (2015) CrossRefGoogle Scholar
  19. 19.
    K. Gao, C. Xu, Z. Cui, C. Liu, L. Gao, C. Li, D. Wu, H.-L. Cai, X. Wu, Phys. Chem. Chem. Phys. 18, 7626 (2016) CrossRefGoogle Scholar
  20. 20.
    K. Gao, Z. Cui, C. Liu, J. Zhu, H.-L. Cai, X. Wu, RSC Adv. 5, 62647 (2015) CrossRefGoogle Scholar
  21. 21.
    K. Gao, M. Gu, X. Qiu, X. Ying, H.-Y. Ye, Y. Zhang, J. Sun, X. Meng, F. Zhang, D. Wu, J. Mater. Chem. C 2, 9957 (2014) CrossRefGoogle Scholar
  22. 22.
    S.-S. Wang, X.-X. Chen, B. Huang, Y.-J. Su, W.-X. Zhang, M.-H. Zeng, X.-M. Chen, J. Mater. Chem. C 6, 2221 (2018) CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, H.-Y. Ye, W. Zhang, R.-G. Xiong, Inorg. Chem. Front. 1, 118 (2014) CrossRefGoogle Scholar
  24. 24.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Fu, W. Zhang, H.L. Cai, J.Z. Ge, Y. Zhang, R.G. Xiong, Adv. Mater. 23, 5658 (2011) CrossRefGoogle Scholar
  26. 26.
    D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Li, Science 339, 425 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    C. Thirmal, P. Biswas, Y. Shin, T. Noh, N. Giridharan, A. Venimadhav, P. Murugavel, J. Appl. Phys. 120, 124107 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 463, 789 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    M. Veithen, X. Gonze, P. Ghosez, Phys. Rev. Lett. 93, 187401 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Sui, W.-T. Chen, J.-J. Ma, R.-H. Hu, D.-S. Liu, RSC Adv. 6, 7364 (2016) CrossRefGoogle Scholar
  31. 31.
    W. Yang, H. Li, J. Lin, G. Chen, Y. Wang, L. Wang, H. Lu, L. Chen, Q. Lei, J. Mater. Sci.: Mater. Electr. 28, 9658 (2017) Google Scholar
  32. 32.
    H. Yadav, N. Sinha, S. Goel, A. Hussain, B. Kumar, J. Appl. Crystallogr. 49, 2053 (2016) CrossRefGoogle Scholar
  33. 33.
    N. Kol, L. Adler-Abramovich, D. Barlam, R.Z. Shneck, E. Gazit, I. Rousso, Nano Lett. 5, 1343 (2005) ADSCrossRefGoogle Scholar
  34. 34.
    L. Niu, X. Chen, S. Allen, S.J. Tendler, Langmuir 23, 7443 (2007) CrossRefGoogle Scholar
  35. 35.
    J.D. Bauer, E. Haussühl, B.R. Winkler, D. Arbeck, V. Milman, S. Robertson, Crys. Growth Des. 10, 3132 (2010) CrossRefGoogle Scholar
  36. 36.
    K.J. Ramos, D.E. Hooks, D.F. Bahr, Philos. Mag. 89, 2381 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    K.J. Ramos, D.F. Bahr, D.E. Hooks, Philos. Mag. 91, 1276 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    S.C. Sahoo, S.B. Sinha, M. Kiran, U. Ramamurty, A.F. Dericioglu, C.M. Reddy, P.E. Naumov, J. Am. Chem. Soc. 135, 13843 (2013) CrossRefGoogle Scholar
  39. 39.
    G.R. Krishna, M.S. Kiran, C.L. Fraser, U. Ramamurty, C.M. Reddy, Adv. Funct. Mater. 23, 14220 (2013) Google Scholar
  40. 40.
    N.K. Nath, M.K. Panda, S.C. Sahoo, P. Naumov, Cryst. Eng. Commun. 16, 1850 (2014) CrossRefGoogle Scholar
  41. 41.
    M.K. Panda, S. Ghosh, N. Yasuda, T. Moriwaki, G.D. Mukherjee, C.M. Reddy, P. Naumov, Nat. Chem. 7, 65 (2015) CrossRefGoogle Scholar
  42. 42.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004) ADSCrossRefGoogle Scholar
  43. 43.
    H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 59, 1 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    E.C. Spencer, M.S. Kiran, W. Li, U. Ramamurty, N.L. Ross, A.K. Cheetham, Angew. Chem. Int. Ed. 53, 5583 (2014) CrossRefGoogle Scholar
  45. 45.
    U. Ramamurty, J.-I. Jang, CrystEngComm 16, 12 (2014) CrossRefGoogle Scholar
  46. 46.
    A.M. Reilly, A. Tkatchenko, Phys. Rev. Lett. 113, 055701 (2014) ADSCrossRefGoogle Scholar
  47. 47.
    S. Karki, T. Frišèiæ, L. Fabian, P.R. Laity, G.M. Day, W. Jones, Adv. Mater. 21, 3905 (2009) CrossRefGoogle Scholar
  48. 48.
    S. Ghosh, A. Mondal, M. Kiran, U. Ramamurty, C.M. Reddy, Crys. Growth Des. 13, 4435 (2013) CrossRefGoogle Scholar
  49. 49.
    I. Azuri, L. Adler-Abramovich, E. Gazit, O. Hod, L. Kronik, J. Am. Chem. Soc. 136, 963 (2014) CrossRefGoogle Scholar
  50. 50.
    I. Azuri, E. Meirzadeh, D. Ehre, S.R. Cohen, A.M. Rappe, M. Lahav, I. Lubomirsky, L. Kronik, Angew. Chem. Int. Ed. 54, 13566 (2015) CrossRefGoogle Scholar
  51. 51.
    R. Roberts, R. Rowe, P. York, Powder Technol. 65, 139 (1991) CrossRefGoogle Scholar
  52. 52.
    S. Varughese, M.S. Kiran, U. Ramamurty, G.R. Desiraju, Chemistry 7, 2118 (2012) Google Scholar
  53. 53.
    S. Shankar, R. Balgley, M. Lahav, S.R. Cohen, R. Popovitz-Biro, M.E. Van Der Boom, J. Am. Chem. Soc. 137, 226 (2014) CrossRefGoogle Scholar
  54. 54.
    A.P. Middelberg, L. He, A.F. Dexter, H.-H. Shen, S. Holt, R. Thomas, J. Royal Soc. Interface 5, 47 (2007) CrossRefGoogle Scholar
  55. 55.
    A. Alsaad, C.M. Marin, N. Alaqtash, H.-W. Chao, T.-H. Chang, C.L. Cheung, A. Ahmad, I. Qattan, R.F. Sabirianov, J. Phys. Chem. Solids 113, 82 (2018) ADSCrossRefGoogle Scholar
  56. 56.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  57. 57.
    J.P. Perdew, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  58. 58.
    G. Kresse, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  59. 59.
    J.P. Perdew, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  60. 60.
    J. Klimeš, D.R. Bowler, A. Michaelides, Phys. Rev. B 83, 195131 (2011) ADSCrossRefGoogle Scholar
  61. 61.
    A. Puzder, M. Dion, D.C. Langreth, J. Chem. Phys. 124, 164105 (2006) ADSCrossRefGoogle Scholar
  62. 62.
    K. Berland, Rep. Prog. Phys. 78, 066501 (2015) ADSCrossRefGoogle Scholar
  63. 63.
    S.-C. Wu, G.H. Fecher, S. Shahab Naghavi, C. Felser, J. Appl. Phys. 125, 082523 (2019) ADSCrossRefGoogle Scholar
  64. 64.
    H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, B. Yang, ACS Nano 11, 2239 (2017) CrossRefGoogle Scholar
  65. 65.
    J. Zhu, K. Gao, S. Xiao, X. Qiu, H.-L. Cai, X. Wu, Phys. Chem. Chem. Phys. 17, 4029 (2015) CrossRefGoogle Scholar
  66. 66.
    S. Pugh, Lond. Edinb. Dubl. Philo. Mag. 45, 823 (1954) CrossRefGoogle Scholar
  67. 67.
    W. Voight, Teubner, Leipzig 962 (1928) Google Scholar
  68. 68.
    A. Reuss, J. Appl. Math. Mech. 9, 49 (1929) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Ahmad Alsaad
    • 1
    Email author
  • Nabil Alaqtash
    • 2
  • Ali Al Kadhim
    • 3
  • Renat F. Sabirianov
    • 3
  • Ahmad Ahmad
    • 1
  • Issam A. Qattan
    • 4
  • Mohammad-Ali H. Al-Akhras
    • 1
  1. 1.Department of Physical SciencesJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of PhysicsThe Hashemite UniversityZarqaJordan
  3. 3.Department of PhysicsUniversity of Nebraska at OmahaOmahaUSA
  4. 4.Department of PhysicsKhalifa University of Science and TechnologyAbu DhabiUAE

Personalised recommendations