Advertisement

Insight into microstructure and dynamics of network forming liquid from the analysis based on shell–core particles

  • Pham K. Hung
  • Le T. VinhEmail author
  • Nguyen V. Hong
  • Giap T. T. Trang
  • Nguyen T. Nhan
Regular Article
  • 20 Downloads

Abstract

Large models of silica melt have been produced at 3500 K and pressures of 0, 5, 10, 15, 20, 25, 30 and 45 GPa by molecular dynamics simulation. New topological analysis is performed based on shell–core particles. The simulation shows that although the fraction of different types of basic units varies strongly, the topology of those units remains almost constant under pressure. The O-particles contain from 2 to 14 O and Si-particles have 1 or 2 Si. The clusters of particles (CP) include Si-clusters and O-clusters which occupy micro-regions with pure compositions and contain up to 8 Si and 106 O, respectively. The densification is realized by two ways: (i) increasing density of atoms in shell and core of particles; (ii) increasing number of small O-particles in expense of large ones. The simulation also reveals particles and CP which are stable for long times. Strong chemical bonds between core and shell atoms prevent those particles and CP from breaking apart. During about one nanosecond the solid-like atoms are non-uniformly distributed in the space where they gather instead in rigid Si–O subnets, stable particles and clusters of stable particles. We find that the dynamics heterogeneity observed at low pressure is originated from the small rate of bond-breaking events and non-uniform spatial distribution of these events.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    Q. Mei, C.J. Benmore, J.K.R. Weber, Phys. Rev. Lett. 98, 057802 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Mozzi, B.E. Warren, J. Appl. Crystallogr. 2, 164 (1969) CrossRefGoogle Scholar
  3. 3.
    P.F. Mcmillan, B.T. Poe, Ph. Gillet, B. Reynard, Geochim. Cosmochim. Acta 58, 3653 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    C. Preschera, V.B. Prakapenk, J. Stefanski, S. Jahn, L.B. Skinner, Y. Wang, Proc. Natl. Acad. Sci. USA 114, 1 (2017) CrossRefGoogle Scholar
  5. 5.
    C.J. Benmore, E. Soignard, S.A. Amin, M. Guthrie, S.D. Shastri, P.L. Lee, J.L. Yarger, Phys. Rev. B 81, 054105 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    T. Sato, N. Funamori, Phys. Rev. B 82, 184102 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    T. Sato, N. Funamori, Phys. Rev. Lett. 101, 255502 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    C. Sonneville, A. Mermet, B. Champagnon, C. Martinet, J. Margueritat, D. de Ligny, T. Deschamps, F. Balima, J. Chem. Phys. 137, 124505 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    C. Sonneville, T. Deschamps, C. Martinet, D. de Ligny, A. Mermet, B. Champagnon, J. Non-Cryst. Solids 382, 133 (213) Google Scholar
  10. 10.
    M. Zanatta, G. Baldi, R.S. Brusa, W. Egger, A. Fontana, E. Gilioli, S. Mariazzi, G. Monaco, L. Ravelli, F. Sacchetti, Phys. Rev. Lett. 112, 045501 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    R.G. Della Valle, H.C. Andersen, J. Phys. Chem. 97, 2682 (1992) CrossRefGoogle Scholar
  12. 12.
    S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 39, 334 (2007) CrossRefGoogle Scholar
  13. 13.
    A. Kerrache, V. Teboul, A. Monteil, Chem. Phys. 321, 69 (2006) CrossRefGoogle Scholar
  14. 14.
    A. Takada, P. Richet, C.R.A. Catlow, G.D. Price, J. Non-Cryst. Solids 345&346, 224 (2004) CrossRefGoogle Scholar
  15. 15.
    J. Horbach, W. Kob, Phys. Rev. B 60, 3169 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. B 52, 1712690 (1995) ADSCrossRefGoogle Scholar
  17. 17.
    A. Trave, P. Tangney, S. Scandolo, A. Pasquarello, R. Car, Phys. Rev. Lett. 89, 245504 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Rustad, D.A. Yuen, Phys. Rev. B 44, 2108 (1991) ADSCrossRefGoogle Scholar
  19. 19.
    P.K. Hung, L.T. Vinh, T. Ba Van, N.V. Hong, N.V. Yen, J. Non-Cryst. Solids 462, 1 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    M. Landmann, T. Köhler, E. Rauls, T. Frauenheim, W.G. Schmidt, J. Phys.: Condens. Matter 26, 253201 (2014) Google Scholar
  21. 21.
    A. Takada, J. Non-Cryst. Solids 499, 309 (2018) ADSCrossRefGoogle Scholar
  22. 22.
    B.B. Karki, B. Dipesh, L. Stixrude, Phys. Rev. B 76, 104205 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    M. Vogel, S.C. Glotzer, Phys. Rev. Lett. 92, 255901 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    H. Mizuno, R. Yamamoto, Phys. Rev. E 84, 011506 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    B. van Beest, G. Kramer, R. van Santen, Phys. Rev. Lett. 64, 1955 (1990) ADSCrossRefGoogle Scholar
  26. 26.
    M.T. Lan, T. Thuy Duong, N.V. Huy, N.V. Hong, Mater. Res. Express 4, 035202 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pham K. Hung
    • 1
  • Le T. Vinh
    • 1
    • 2
    Email author
  • Nguyen V. Hong
    • 3
  • Giap T. T. Trang
    • 3
  • Nguyen T. Nhan
    • 3
  1. 1.Simulation in Materials Science Research Group, Advanced Institute of Materials Science, Ton Duc Thang UniversityHo Chi Minh CityViet Nam
  2. 2.Faculty of Electrical and Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityViet Nam
  3. 3.Department of Computational PhysicsHanoi University of Science and TechnologyHanoiViet Nam

Personalised recommendations