Advertisement

Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments

  • Matthew J. LloydEmail author
  • Robert G. Abernethy
  • David E. J. Armstrong
  • Paul A. J. Bagot
  • Michael P. Moody
  • Enrique Martinez
  • Duc Nguyen-Manh
Open Access
Regular Article
  • 208 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.

Graphical abstract

References

  1. 1.
    M. Rieth, J. Nucl. Mater. 432, 482 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    D. Armstrong, P. Edmondson, S. Roberts, Appl. Phys. Lett. 102, 251901 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    R. Abernethy, Mater. Sci. Technol. 33, 388 (2017) CrossRefGoogle Scholar
  4. 4.
    M. Gilbert, J.-C. Sublet, Nucl. Fusion 51, 043005 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    M. Gilbert, J.-C. Sublet, S. Dudarev, Nucl. Fusion 57, 044002 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    A. Xu, C. Beck, D.E. Armstrong, K. Rajan, G.D. Smith, P.A. Bagot, S.G. Roberts, Acta Mater. 87, 121 (2015) CrossRefGoogle Scholar
  7. 7.
    A. Xu, D.E. Armstrong, C. Beck, M.P. Moody, G.D. Smith, P.A. Bagot, S.G. Roberts, Acta Mater. 124, 71 (2017) CrossRefGoogle Scholar
  8. 8.
    S. Maloy, M. James, W. Sommer Jr. G. Willcutt Jr. M. Lopez, T. Romero, M.B. Toloczko, J. Nucl. Mater. 343, 219 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    M. Klimenkov, U. Jäntsch, M. Rieth, H. Schneider, D. Armstrong, J. Gibson, S. Roberts, Nucl. Mater. Energy 9, 480 (2016) CrossRefGoogle Scholar
  10. 10.
    A. Hasegawa, M. Fukuda, S. Nogami, K. Yabuuchi, Fusion Eng. Des. 89, 1568 (2014) CrossRefGoogle Scholar
  11. 11.
    Y. Katoh, L.L. Snead, L.M. Garrison, X. Hu, T. Koyanagi, C.M. Parish, P.D. Edmondson, M. Fukuda, T. Hwang, T. Tanaka, A. Hasegawa, J. Nucl. Mater. 520, 193 (2019) ADSCrossRefGoogle Scholar
  12. 12.
    X. Hu, C.M. Parish, K. Wang, T. Koyanagi, B.P. Eftink, Y. Katoh, Acta Mater. 165, 51 (2019) CrossRefGoogle Scholar
  13. 13.
    M.J. Lloyd, R.G. Abernethy, M.R. Gilbert, I. Griffiths, P.A.J. Bagot, D. Nguyen-Manh, M.P. Moody, D.E.J. Armstrong, Scr. Mater. 173, 96 (2019) CrossRefGoogle Scholar
  14. 14.
    F. Soisson, C.-C. Fu, Phys. Rev. B 76, 214102 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    F. Soisson, C. Becquart, N. Castin, C. Domain, L. Malerba, E. Vincent, J. Nucl. Mater. 406, 55 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    E. Martínez, O. Senninger, C.-C. Fu, F. Soisson, Phys. Rev. B 86, 224109 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    O. Senninger, F. Soisson, E. Martínez, M. Nastar, C.-C. Fu, Y. Bréchet, Acta Mater. 103, 1 (2016) CrossRefGoogle Scholar
  18. 18.
    E. Martínez, O. Senninger, A. Caro, F. Soisson, M. Nastar, B.P. Uberuaga, Phys. Rev. Lett. 120, 106101 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Phys. Rev. B 96, 094108 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    T. Suzudo, M. Yamaguchi, A. Hasegawa, Modell. Simul. Mater. Sci. Eng. 22, 075006 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    T. Suzudo, M. Yamaguchi, A. Hasegawa, J. Nucl. Mater. 467, 418 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    T. Suzudo, A. Hasegawa, Sci. Rep. 6, 36738 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    J. Wróbel, D. Nguyen-Manh, K. Kurzydłowski, S. Dudarev, J. Phys.: Condens. Matter 29, 145403 (2017) ADSGoogle Scholar
  24. 24.
    S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, C.G. Cardona et al., Sandia Report SAND2009-6226, 2009 Google Scholar
  25. 25.
    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    J. Mundy, S. Rothman, N. Lam, H. Hoff, L. Nowicki, Phys. Rev. B 18, 6566 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum.Methods Phys. Res. Sect. B 268, 1818 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    S. Pellegrino, P. Trocellier, S. Miro, Y. Serruys, É. Bordas, H. Martin, N. Chaâbane, S. Vaubaillon, J. Gallien, L. Beck, Nucl. Instr. Methods Phys. Res. Sect. B 273, 213 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    A. Hasegawa, M. Fukuda, K. Yabuuchi, S. Nogami, J. Nucl. Mater. 471, 175 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Lloyd, M.P. Moody, D.E.J. Armstrong, D. Nguyen-Manh, Oxford Research Archive (2019), DOI:  https://doi.org/10.5287/bodleian:G2YDAv10p

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Matthew J. Lloyd
    • 1
    • 2
    Email author
  • Robert G. Abernethy
    • 1
    • 2
  • David E. J. Armstrong
    • 1
  • Paul A. J. Bagot
    • 1
  • Michael P. Moody
    • 1
  • Enrique Martinez
    • 3
  • Duc Nguyen-Manh
    • 1
    • 2
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Culham Centre for Fusion Energy, United Kingdom Atomic Energy Authority, Culham Science CentreAbingdonUK
  3. 3.Theoretical Division, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations