Cascade overlap with vacancy-type defects in Fe

Abstract

In order to understand the effect of irradiation on the material properties, we need to look into the atomistic evolution of the system during the recoil event. The nanoscale features formed due to irradiation will ultimately affect the macroscopic properties of the material. The defect production in pristine materials have been subject to investigation previously, but as the dose increases, overlap will start to happen. This effect of cascades overlapping with pre-existing debris has only recently been touched, and mainly been investigated for interstitial-type defects. We focus on vacancy-type defect clusters in BCC Fe and start a recoil event in their near vicinity. The final defect number as well as the transformation of the defect clusters are investigated, and their behaviour is related to the distance between the defect and the cascade centre. We found that for vacancy-type defects, the suppression of defect production is not as strong as previously observed for interstitial-type defects. The cascade-induced transformation, such as change in Burgers vector or creation of dislocations, was determined for all initial defect structures.

Graphical abstract

References

  1. 1.

    L. Malerba, J. Nucl. Mater. 351, 28 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber et al., J. Nucl. Mater. 512, 479 (2018)

    Article  Google Scholar 

  3. 3.

    M.L. Jenkins, Z. Yao, M. Hernández-Mayoral, M.A. Kirk, J. Nucl. Mater. 389, 202 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    Z. Yao, M.L. Jenkins, M. Hernández-Mayoral, M.A. Kirk, Philos. Mag. 90, 4634 (2010)

    Article  Google Scholar 

  5. 5.

    R.S. Averback, R. Benedek, K.L. Merkle, Phys. Rev. B 18, 4171 (1978)

    ADS  Article  Google Scholar 

  6. 6.

    B.C. Masters, Philos. Mag. 11, 881 (1965)

    ADS  Article  Google Scholar 

  7. 7.

    M.L. Jenkins, C.A. English, B.L. Eyre, Philos. Mag. A 38, 97 (1978)

    ADS  Article  Google Scholar 

  8. 8.

    M.C. Marinica, F. Willaime, J.P. Crocombette, Phys. Rev. Lett. 108, 025501 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    Y.N. Osetsky, D.J. Bacon, V. Mohles, Philos. Mag. 83, 3623 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    S.M. Hafez Haghighat, J. Fikar, R. Schäublin, J. Nucl. Mater. 382, 153 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    D. Terentyev, D.J. Bacon, Y.N. Osetsky, J. Phys.: Condens. Matter 20, 445007 (2008)

    ADS  Google Scholar 

  12. 12.

    G. Bonny, D. Terentyev, L. Malerba, J. Nucl. Mater. 416, 74 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    R. Schäublin, S.M. Hafez Haghighat, J. Nucl. Mater. 442, S648 (2013)

    Article  Google Scholar 

  14. 14.

    F. Granberg, D. Terentyev, K.O.E. Henriksson, F. Djurabekova, K. Nordlund, Fusion Sci. Technol. 66, 288 (2014)

    Article  Google Scholar 

  15. 15.

    F. Granberg, D. Terentyev, K. Nordlund, J. Nucl. Mater. 460, 29 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    K. Vörtler, N. Juslin, G. Bonny, L. Malerba, K. Nordlund, J. Phys.: Condens. Matter 23, 355007 (2011)

    Google Scholar 

  17. 17.

    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    J. Byggmästar, F. Granberg, K. Nordlund, J. Nucl. Mater. 508, 539 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    F. Granberg, J. Byggmästar, A.E. Sand, K. Nordlund, Europhys. Lett. 119, 56003 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    A.E. Sand, J. Byggmästar, A. Zitting, K. Nordlund, J. Nucl. Mater. 511, 74 (2018)

    ADS  Article  Google Scholar 

  21. 21.

    J. Byggmästar, F. Granberg, A.E. Sand, A. Pirttikoski, R. Alexander, M.C. Marinica, K. Nordlund, J. Phys.: Condens. Matter 31, 245402 (2019)

    ADS  Google Scholar 

  22. 22.

    X. Wang, N. Gao, Y. Wang, H. Liu, G. Shu, C. Li, B. Xu, W. Liu, J. Nucl. Mater. 519, 331 (2019)

    ADS  Google Scholar 

  23. 23.

    K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, J. Tarus, Phys. Rev. B 57, 7570 (1998)

    ADS  Article  Google Scholar 

  24. 24.

    M. Ghaly, K. Nordlund, R.S. Averback, Philos. Mag. A 79, 795 (1999)

    ADS  Article  Google Scholar 

  25. 25.

    K. Nordlund, Comput. Mater. Sci. 3, 456 (1995)

    Article  Google Scholar 

  26. 26.

    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004)

    ADS  Google Scholar 

  27. 27.

    L. Malerba, M. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra et al., J. Nucl. Mater. 406, 38 (2010)

    Google Scholar 

  28. 28.

    C. Björkas, K. Nordlund, Nucl. Instrum. Methods Phys. Res. Sec. B 267, 1836 (2009)

    ADS  Google Scholar 

  29. 29.

    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    ADS  Article  Google Scholar 

  30. 30.

    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    M.R. Gilbert, S.L. Dudarev, P.M. Derlet, D.G. Pettifor, J. Phys.: Condens. Matter 20, 345214 (2008)

    Google Scholar 

  33. 33.

    S. Plimpton, J. Comput. Phys. 117, 19 (1995)

    Article  Google Scholar 

  34. 34.

    R.E. Stoller, J. Nucl. Mater. 276, 32 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    D. Terentyev, C. Lagerstedt, P. Olsson, K. Nordlund, J. Wallenius, C. Becquart, L. Malerba, J. Nucl. Mater. 351, 77 (2006)

    Article  Google Scholar 

  36. 36.

    B.N. Singh, A.J.E. Foreman, Philos. Mag. A 66, 990 (1992)

    Google Scholar 

Download references

Acknowledgments

Open access funding provided by University of Helsinki including Helsinki University Central Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredric Granberg.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-100240-3

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Granberg, F., Byggmästar, J. & Nordlund, K. Cascade overlap with vacancy-type defects in Fe. Eur. Phys. J. B 92, 146 (2019). https://doi.org/10.1140/epjb/e2019-100240-3

Download citation