Advertisement

Cascade overlap with vacancy-type defects in Fe

  • Fredric GranbergEmail author
  • Jesper Byggmästar
  • Kai Nordlund
Open Access
Regular Article
  • 39 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

In order to understand the effect of irradiation on the material properties, we need to look into the atomistic evolution of the system during the recoil event. The nanoscale features formed due to irradiation will ultimately affect the macroscopic properties of the material. The defect production in pristine materials have been subject to investigation previously, but as the dose increases, overlap will start to happen. This effect of cascades overlapping with pre-existing debris has only recently been touched, and mainly been investigated for interstitial-type defects. We focus on vacancy-type defect clusters in BCC Fe and start a recoil event in their near vicinity. The final defect number as well as the transformation of the defect clusters are investigated, and their behaviour is related to the distance between the defect and the cascade centre. We found that for vacancy-type defects, the suppression of defect production is not as strong as previously observed for interstitial-type defects. The cascade-induced transformation, such as change in Burgers vector or creation of dislocations, was determined for all initial defect structures.

Graphical abstract

Notes

Acknowledgments

Open access funding provided by University of Helsinki including Helsinki University Central Hospital.

Supplementary material

References

  1. 1.
    L. Malerba, J. Nucl. Mater. 351, 28 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber et al., J. Nucl. Mater. 512, 479 (2018) CrossRefGoogle Scholar
  3. 3.
    M.L. Jenkins, Z. Yao, M. Hernández-Mayoral, M.A. Kirk, J. Nucl. Mater. 389, 202 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Z. Yao, M.L. Jenkins, M. Hernández-Mayoral, M.A. Kirk, Philos. Mag. 90, 4634 (2010) CrossRefGoogle Scholar
  5. 5.
    R.S. Averback, R. Benedek, K.L. Merkle, Phys. Rev. B 18, 4171 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    B.C. Masters, Philos. Mag. 11, 881 (1965) ADSCrossRefGoogle Scholar
  7. 7.
    M.L. Jenkins, C.A. English, B.L. Eyre, Philos. Mag. A 38, 97 (1978) ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Marinica, F. Willaime, J.P. Crocombette, Phys. Rev. Lett. 108, 025501 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    Y.N. Osetsky, D.J. Bacon, V. Mohles, Philos. Mag. 83, 3623 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    S.M. Hafez Haghighat, J. Fikar, R. Schäublin, J. Nucl. Mater. 382, 153 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    D. Terentyev, D.J. Bacon, Y.N. Osetsky, J. Phys.: Condens. Matter 20, 445007 (2008) ADSGoogle Scholar
  12. 12.
    G. Bonny, D. Terentyev, L. Malerba, J. Nucl. Mater. 416, 74 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    R. Schäublin, S.M. Hafez Haghighat, J. Nucl. Mater. 442, S648 (2013) CrossRefGoogle Scholar
  14. 14.
    F. Granberg, D. Terentyev, K.O.E. Henriksson, F. Djurabekova, K. Nordlund, Fusion Sci. Technol. 66, 288 (2014) CrossRefGoogle Scholar
  15. 15.
    F. Granberg, D. Terentyev, K. Nordlund, J. Nucl. Mater. 460, 29 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    K. Vörtler, N. Juslin, G. Bonny, L. Malerba, K. Nordlund, J. Phys.: Condens. Matter 23, 355007 (2011) Google Scholar
  17. 17.
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    J. Byggmästar, F. Granberg, K. Nordlund, J. Nucl. Mater. 508, 539 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    F. Granberg, J. Byggmästar, A.E. Sand, K. Nordlund, Europhys. Lett. 119, 56003 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    A.E. Sand, J. Byggmästar, A. Zitting, K. Nordlund, J. Nucl. Mater. 511, 74 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    J. Byggmästar, F. Granberg, A.E. Sand, A. Pirttikoski, R. Alexander, M.C. Marinica, K. Nordlund, J. Phys.: Condens. Matter 31, 245402 (2019) ADSGoogle Scholar
  22. 22.
    X. Wang, N. Gao, Y. Wang, H. Liu, G. Shu, C. Li, B. Xu, W. Liu, J. Nucl. Mater. 519, 331 (2019) ADSGoogle Scholar
  23. 23.
    K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, J. Tarus, Phys. Rev. B 57, 7570 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    M. Ghaly, K. Nordlund, R.S. Averback, Philos. Mag. A 79, 795 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    K. Nordlund, Comput. Mater. Sci. 3, 456 (1995) CrossRefGoogle Scholar
  26. 26.
    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004) ADSGoogle Scholar
  27. 27.
    L. Malerba, M. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra et al., J. Nucl. Mater. 406, 38 (2010) Google Scholar
  28. 28.
    C. Björkas, K. Nordlund, Nucl. Instrum. Methods Phys. Res. Sec. B 267, 1836 (2009) ADSGoogle Scholar
  29. 29.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  30. 30.
    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    M.R. Gilbert, S.L. Dudarev, P.M. Derlet, D.G. Pettifor, J. Phys.: Condens. Matter 20, 345214 (2008) Google Scholar
  33. 33.
    S. Plimpton, J. Comput. Phys. 117, 19 (1995) CrossRefGoogle Scholar
  34. 34.
    R.E. Stoller, J. Nucl. Mater. 276, 32 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    D. Terentyev, C. Lagerstedt, P. Olsson, K. Nordlund, J. Wallenius, C. Becquart, L. Malerba, J. Nucl. Mater. 351, 77 (2006) CrossRefGoogle Scholar
  36. 36.
    B.N. Singh, A.J.E. Foreman, Philos. Mag. A 66, 990 (1992) Google Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations