Multi-scale design of new lubricants featuring inhomogeneous viscosity

  • Georgios BletsosEmail author
  • Konstantinos Gkagkas
  • Varvara Asouti
  • Evangelos Papoutsis-Kiachagias
  • Kyriakos C. Giannakoglou
Regular Article
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling


Friction accounts for approximately 15% of fuel energy losses in internal combustion engine vehicles. To reduce it, new lubricants should be designed. Particle-based simulations can provide insight into the lubricant behaviour under extreme contact conditions, at a high computational cost. On the other hand, continuum methods, while capable of efficiently solving macroscopic problems, cannot resolve features at the nano-scale, due to the breakdown of the continuum assumption. This paper presents a multi-scale approach combining continuum and particle-based descriptions for simulating hydrodynamic lubrication systems to design new lubricants minimizing specific friction. Inspired by studies on ionic liquids as lubricants, their layering behaviour is emulated in the continuum domain by introducing inhomogeneous viscosity in the Navier–Stokes equations. Using an evolutionary algorithm, an optimized viscosity profile, leading to a potential improvement in friction performance up to 65%, is identified for a converging hydrodynamic slider. The study is then extended to nano-hydrodynamic lubrication. Specific particle typologies, featuring the aforementioned viscosity variations, are selected using coarse grain molecular dynamics simulations. Through the appropriate tuning of the particles’ properties, viscosity inhomogeneity is achieved and friction is reduced compared to the homogeneous case.

Graphical abstract


  1. 1.
    M.-D. Bermúdez, A.-E. Jiménez, J. Sanes, F.-J. Carrión, Molecules 14, 2888 (2009) CrossRefGoogle Scholar
  2. 2.
    B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374, 607 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Heo, S.B. Sinnott, D.W. Brenner, J.A. Harrison, Computational modeling of nanometer-scale tribology, in Nanotribology and Nanomechanics (Springer, Berlin, Heidelberg, 2005), p. 623 Google Scholar
  4. 4.
    K. Gkagkas, V. Ponnuchamy et al., Tribol. Int. 113, 83 (2017) CrossRefGoogle Scholar
  5. 5.
    A.C.F. Mendonça, A.A.H. Pádua, P. Malfreyt, J. Chem. Theory Comput. 9, 1600 (2013) CrossRefGoogle Scholar
  6. 6.
    C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun. 21, 2244 (2001) CrossRefGoogle Scholar
  7. 7.
    C. Ye, W. Liu, Y. Chen, Z. Ou, Wear 253, 579 (2002) CrossRefGoogle Scholar
  8. 8.
    A.-E. Jiménez, M.-D. Bermúdez, Wear 265, 787 (2008) CrossRefGoogle Scholar
  9. 9.
    B.S. Phillips, J.S. Zabinski, Tribol. Lett. 17, 533 (2004) CrossRefGoogle Scholar
  10. 10.
    J. Qu, P.J. Blau, S. Dai et al., Tribol. Lett. 35, 181 (2009) CrossRefGoogle Scholar
  11. 11.
    E. Manias, G. Hadziioannou, G. ten Brinke, Langmuir 12, 4587 (1996) CrossRefGoogle Scholar
  12. 12.
    J.P. Montfort, G. Hadziioannou, J. Chem. Phys. 88, 7187 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    S. Granick, Science 253, 1374 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    A.I. Vakis, V.A. Yastrebov, J. Scheibert et al., Tribol. Int. 125, 169 (2018) CrossRefGoogle Scholar
  15. 15.
    D. Savio, K. Falk, M. Moseler, Tribol. Int. 120, 269 (2018) CrossRefGoogle Scholar
  16. 16.
    I.A. Cosden, J.R. Lukes, Comput. Phys. Commun. 184, 1958 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics. The finite volume method (Longman Scientific & Technical, 1996) Google Scholar
  18. 18.
    H.G. Weller, G. Tabor, Comput. Phys. 12, 620 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    D.H. Kapsoulis, K.T. Tsiakas, X.S. Trompoukis, V.G. Asouti, K.C. Giannakoglou, Appl. Soft Comput. 64, 1 (2018) CrossRefGoogle Scholar
  20. 20.
    M. Karakasis, K.C. Giannakoglou, Eng. Optim. 38, 941 (2006) MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technical University of Athens (NTUA), School of Mechanical Engineering, Parallel CFD & Optimization UnitAthensGreece
  2. 2.Advanced Technology Division, Toyota Motor Europe NV/SA, Technical CenterZaventemBelgium

Personalised recommendations