Advertisement

Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis

  • Yoshiki KawanoEmail author
  • Tetsuya Ohashi
  • Tsuyoshi Mayama
  • Masaki Tanaka
  • Yelm Okuyama
  • Michihiro Sato
Regular Article
  • 36 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

Mechanisms of strain localization and localized activation of slip systems in α titanium were investigated using a crystal plasticity finite element (CPFE) method. A microscopic image of polycrystalline α titanium was obtained by electron back scatter diffraction (EBSD), and the data was converted from the microscopic image into the geometric model for the CPFE analysis. The uniaxial tensile deformation of the model was numerically reproduced by the CPFE method employing a dislocation density based constitutive equation. The results showed that the strain distribution corresponds well with that obtained by the experiment when the ratio of critical resolved shear stress (CRSS) employed in the numerical simulation is basal:prismatic ⟨a⟩:1st-pyramidal ⟨a⟩:1st-pyramidal ⟨c + a⟩:2nd-pyramidal ⟨c + a⟩ = 1.0:1.0:1.3:2.0:2.0. Next, numerical simulations were performed by changing the ratio of CRSS among the slip systems but keeping all other conditions the same as those of the above uniaxial tensile analysis. The results showed that strain redistribution typically occurs between hard and soft regions with high and low CRSSs for the primary slip systems; this redistribution resulted in a localized higher strain and activation of slip systems. However, localized activation of slip systems was observed even in slip systems with higher CRSS; the mechanism could be explained by the strain redistribution in the tensile direction.

Graphical abstract

References

  1. 1.
    R. Boyer, G. Weisch, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, 1994) Google Scholar
  2. 2.
    G. Lütjering, Mater. Sci. Eng. A 243, 32 (1998) CrossRefGoogle Scholar
  3. 3.
    S. Ishihara, A.J. Mcevily, ICF12 2, 1 (2009) Google Scholar
  4. 4.
    S.I. Rokhlin, J.Y. Kim, B. Xie, B. Zoofan, NDT & E Int. 40, 462 (2007) CrossRefGoogle Scholar
  5. 5.
    D. Ozturk, A.L. Pilchak, S. Ghosh, Scr. Mater. 127, 15 (2017) CrossRefGoogle Scholar
  6. 6.
    R.J. Asaro, J.R. Rice, J. Mech. Phys. Solids 25, 309 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 30, 1087 (1982) CrossRefGoogle Scholar
  8. 8.
    R. Hook, J. Hirth, Acta Metall. 15, 535 (1967) CrossRefGoogle Scholar
  9. 9.
    R. Hook, J. Hirth, Acta Metall. 15, 1099 (1967) CrossRefGoogle Scholar
  10. 10.
    R. Kondou, T. Ohashi, S. Miura, J. Comput. Sci. Technol. 2, 162 (2008) CrossRefGoogle Scholar
  11. 11.
    K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.S. Park, A.L. Pilchak, Int. J. Solids Struct. 94–95, 35 (2016) CrossRefGoogle Scholar
  12. 12.
    W.J. Evans, Mater. Sci. Eng. A 243, 89 (1998) CrossRefGoogle Scholar
  13. 13.
    P.J. Ashton, T.S. Jun, Z. Zhang, T.B. Britton, A.M. Harte, S.B. Leen, F.P.E. Dunne, Int. J. Fatigue 100, 377 (2017) CrossRefGoogle Scholar
  14. 14.
    S. Hémery, A. Nait-Ali, P. Villechaise, Mech. Mater. 109, 1 (2017) CrossRefGoogle Scholar
  15. 15.
    Y. Kawano, T. Ohashi, T. Mayama, R. Kondou, Int. J. Mech. Sci. 146–147, 475 (2018) CrossRefGoogle Scholar
  16. 16.
    V. Volterra, Ann. Sci. Éc. Norm. Supér. 24, 401 (1907) CrossRefGoogle Scholar
  17. 17.
    X. Wu, S.R. Kalidindi, C. Necker, A.A. Salem, Acta Mater. 55, 423 (2007) CrossRefGoogle Scholar
  18. 18.
    H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, M.A. Crimp, Acta Mater. 61, 7555 (2013) CrossRefGoogle Scholar
  19. 19.
    T. Hama, A. Kobuki, H. Takuda, Int. J. Plast. 91, 77 (2017) CrossRefGoogle Scholar
  20. 20.
    L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater. 132, 598 (2017) CrossRefGoogle Scholar
  21. 21.
    B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, E. Héripré, Mater. Sci. Eng. A 636, 91 (2015) CrossRefGoogle Scholar
  22. 22.
    P.S. Follansbee, G.T. Gray, Metall. Trans. A 20, 863 (1989) CrossRefGoogle Scholar
  23. 23.
    T.S. Jun, Z. Zhang, G. Sernicola, F.P.E. Dunne, T.B. Britton, Acta Mater. 107, 298 (2016) CrossRefGoogle Scholar
  24. 24.
    A. Shahba, S. Ghosh, Int. J. Plast. 87, 48 (2016) CrossRefGoogle Scholar
  25. 25.
    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Acta Mater. 49, 3433 (2001) CrossRefGoogle Scholar
  26. 26.
    Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, R. Radovitzky, Int. J. Plast. 24, 2278 (2008) CrossRefGoogle Scholar
  27. 27.
    C.R. Weinberger, C.C. Battaile, H. Lim, J.D. Carroll, B.L. Boyce, T.E. Buchheit, Int. J. Plast. 60, 1 (2014) CrossRefGoogle Scholar
  28. 28.
    C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Acta Mater. 81, 386 (2014) CrossRefGoogle Scholar
  29. 29.
    A. Guery, F. Hild, F. Latourte, S. Roux, Int. J. Plast. 81, 249 (2016) CrossRefGoogle Scholar
  30. 30.
    Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, F.P.E. Dunne, Int. J. Plast. 108, 88 (2018) CrossRefGoogle Scholar
  31. 31.
    Y. Kawano, T. Ohashi, T. Mayama, M. Mitsuhara, Y. Okuyama, M. Sato, Mater. Trans. 60, (2019) Google Scholar
  32. 32.
    Y. Kawano, T. Ohashi, T. Mayama, M. Tanaka, M. Sakamoto, Y. Okuyama, M. Sato, Trans. JSME (in Japanese) 84, 17 (2018) CrossRefGoogle Scholar
  33. 33.
    A.J. Wilkinson, Scr. Mater. 44, 2379 (2001) CrossRefGoogle Scholar
  34. 34.
    M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Nucl. Eng. Des. 235, 713 (2005) CrossRefGoogle Scholar
  35. 35.
    M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Acta Mater. 54, 539 (2006) CrossRefGoogle Scholar
  36. 36.
    M. Kamaya, Mater. Charact. 66, 56 (2012) CrossRefGoogle Scholar
  37. 37.
    W.H. Peters, W.F. Ranson, Opt. Eng. 21, 427 (1982) ADSGoogle Scholar
  38. 38.
    T. Morikawa, Y. Mitani, K. Higashida, Mater. Sci. Forum 638–642, 1574 (2010) CrossRefGoogle Scholar
  39. 39.
    G. Martin, C.W. Sinclair, R.A. Lebensohn, Mater. Sci. Eng. A 603, 37 (2014) CrossRefGoogle Scholar
  40. 40.
    P. Gao, Y. Li, R. Wu, Z. Lei, Y. Cai, M. Zhan, Materials (Basel) 11, 2194 (2018) ADSCrossRefGoogle Scholar
  41. 41.
    R. Hill, J. Mech. Phys. Solids 14, 95 (1966) ADSCrossRefGoogle Scholar
  42. 42.
    T. Ohashi, Philos. Mag. A 70, 793 (1994) ADSCrossRefGoogle Scholar
  43. 43.
    T. Ohashi, Trans. Jpn. Inst. Met. 28, 906 (1987) CrossRefGoogle Scholar
  44. 44.
    T. Ohashi, Int. J. Plast. 21, 2071 (2005) CrossRefGoogle Scholar
  45. 45.
    T. Ohashi, Philos. Mag. Lett. 75, 51 (1997) ADSCrossRefGoogle Scholar
  46. 46.
    T. Ohashi, R. Kondou, Philos. Mag. 93, 366 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    E.S. Fisher, C.J. Renken, Phys. Rev. A 135, 482 (1964) ADSCrossRefGoogle Scholar
  48. 48.
    D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu, Acta Mater. 61, 5779 (2013) CrossRefGoogle Scholar
  49. 49.
    M.R. Bache, Int. J. Fatigue 25, 1079 (2003) CrossRefGoogle Scholar
  50. 50.
    F.P.E. Dunne, A. Walker, D. Rugg, Proc. R. Soc. London A 463, 1467 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    X. Wu, S. Kalidindi, C. Necker, A. Salem, Acta Mater. 55, 423 (2007) CrossRefGoogle Scholar
  52. 52.
    B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, E. Héripré, Mater. Sci. Eng. A 636, 91 (2015) CrossRefGoogle Scholar
  53. 53.
    J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, J.W. Lim, Met. Mater. Int. 17, 733 (2011) CrossRefGoogle Scholar
  54. 54.
    P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Sci. Eng. A 590, 74 (2014) CrossRefGoogle Scholar
  55. 55.
    D. Tromans, Ijrras 6, 462 (2011) MathSciNetGoogle Scholar
  56. 56.
    F.P.E. Dunne, D. Rugg, Fatigue Fract. Eng. Mater. Struct. 31, 949 (2008) CrossRefGoogle Scholar
  57. 57.
    Z. Zheng, D.S. Balint, F.P.E. Dunne, Acta Mater. 127, 43 (2017) CrossRefGoogle Scholar
  58. 58.
    D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, J.V. Bernier, Acta Mater. 128, 406 (2017) CrossRefGoogle Scholar
  59. 59.
    K.E.K. Amouzou, T. Richeton, A. Roth, M.A. Lebyodkin, T.A. Lebedkina, Int. J. Plast. 80, 222 (2016) CrossRefGoogle Scholar
  60. 60.
    H. Abdolvand, J. Wright, A.J. Wilkinson, Nat. Commun. 9, 1 (2018) CrossRefGoogle Scholar
  61. 61.
    M.P. Echlin, J.C. Stinville, V.M. Miller, W.C. Lenthe, T.M. Pollock, Acta Mater. 114, 164 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKitami Institute of TechnologyKitamiJapan
  2. 2.Department of Materials Science and EngineeringKumamoto UniversityKumamotoJapan
  3. 3.Department of Advanced Materials Science and EngineeringFaculty of Engineering Sciences, Kyushu UniversityFukuokaJapan
  4. 4.Department of Control EngineeringNational Institute of Technology, Kisarazu CollegeKisarazuJapan

Personalised recommendations