Advertisement

Nonlocal multiscale modeling of deformation behavior of polycrystalline copper by second-order homogenization method

  • Makoto UchidaEmail author
  • Yoshihisa Kaneko
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

Engineering materials usually exhibit heterogeneity such as that observed in the polycrystalline structure of metals, and this heterogeneity affects the nonuniform deformation of a material. In this study, the micro- to macroscopic nonuniform deformation of polycrystalline copper specimen with a curved gage section is evaluated by a finite element method (FEM) simulation based on the second-order homogenization method (2nd-HM). The effects of the microstructure size and macroscopic stress gradient on the nonuniform deformation of the material are then investigated by comparing the simulation and experimental results. A two-dimensional plane strain polycrystalline microstructure was periodically applied to all the integration points in the macrostructure; the anisotropic deformation of the crystal grains is represented by the conventional crystalline plasticity constitutive equation. The computational results indicate that the interaction between nonuniform deformation on the micro and macroscopic scales induces a slight size effect in the material. However, the FEM simulation based on the 2nd-HM could not predict the decrease in the macroscopic strain concentration in the specimens with large crystalline grains, which was observed in the experimental studies, because of random strain localization resulting from the microscopic heterogeneity.

Graphical abstract

References

  1. 1.
    M.A. Sutton, W.J. Walters, W.H. Peters, W.F. Ranson, S.R. McNeill, Image Vision Comput. 1, 133 (1983) CrossRefGoogle Scholar
  2. 2.
    M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, S.R. McNeill, Image Vision Comput. 4, 143 (1986) CrossRefGoogle Scholar
  3. 3.
    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Acta Mater. 49, 3433 (2001) CrossRefGoogle Scholar
  4. 4.
    E. Parsons, M.C. Boyce, D.M. Parks, Polymer 45, 2665 (2004) CrossRefGoogle Scholar
  5. 5.
    M. Uchida, N. Tada, Int. J. Plast. 27, 2085 (2011) CrossRefGoogle Scholar
  6. 6.
    M. Uchida, T. Ueno, T. Abe, Y. Kaneko, Adv. Exp. Mech. 2, 76 (2017) Google Scholar
  7. 7.
    M. Uchida, A. Taniguchi, Y. Kaneko, Adv. Exp. Mech. 3, 135 (2018) Google Scholar
  8. 8.
    A. Taniguchi, T. Maeyama, M. Uchida, Y. Kaneko, Key Eng. Mater. 794, 246 (2019) CrossRefGoogle Scholar
  9. 9.
    S. Avril, F. Pierron, M.A. Sutton, J. Yan, Mech. Mater. 40, 729 (2008) CrossRefGoogle Scholar
  10. 10.
    P. Wang, F. Pierron, O.T. Thomsen, Exp. Mech. 53, 1001 (2013) CrossRefGoogle Scholar
  11. 11.
    E. Cosserat, F. Cosserat, Théorie des corps déformables, Librairie Scientifique (A. Hermann et Fils, Paris, 1909) [reprint: Hermann Librairie Scientique, Paris, 2009] Google Scholar
  12. 12.
    R.A. Toupin, Arch. Ration Mech. Anal. 11, 385 (1962) MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.D. Mindlin, Arch. Ration Mech. Anal. 16, 51 (1964) CrossRefGoogle Scholar
  14. 14.
    R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct. 4, 109 (1968) CrossRefGoogle Scholar
  15. 15.
    E.C. Aifantis, Int. J. Eng. Sci. 30, 1279 (1992) CrossRefGoogle Scholar
  16. 16.
    E.C. Aifantis, Int. J. Eng. Sci. 33, 2161 (1995) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Tomita, Appl. Mech. Rev. 47, 171 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    A. Zervos, P. Papanastasiou, I. Vardoulakis, Int. J. Numer. Methods Eng. 50, 1369 (2001) CrossRefGoogle Scholar
  19. 19.
    R.K.A. Al-Rub, G.Z. Voyiadjis, Int. J. Numer. Methods Eng. 63, 603 (2005) CrossRefGoogle Scholar
  20. 20.
    N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 41, 1825 (1993) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33, 295 (1997) CrossRefGoogle Scholar
  22. 22.
    H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Gao, Y. Huang, Int. J. Solids Struct. 38, 2615 (2001) CrossRefGoogle Scholar
  24. 24.
    M.E. Gurtin, J. Mech. Phys. Solids 48, 989 (2000) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.E. Gurtin, J. Mech. Phys. Solids 50, 5 (2002) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M.E. Gurtin, Int. J. Plasticity 19, 47 (2003) CrossRefGoogle Scholar
  27. 27.
    V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Int. J. Numer. Methods Eng. 54, 1235 (2002) CrossRefGoogle Scholar
  28. 28.
    V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Comput. Methods Appl. Mech. Eng. 193, 5525 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    Ł. Kaczmarczyk, C.J. Pearce, N. Biæaniæ, Int. J. Numer. Methods Eng. 74, 509 (2008) CrossRefGoogle Scholar
  30. 30.
    Ł. Kaczmarczyk, C.J. Pearce, N. Biæaniæ, Comput. Struct. 88, 1383 (2010) CrossRefGoogle Scholar
  31. 31.
    X. Yuan, Y. Tomita, T. Andou, Mech. Res. Commun. 35, 126 (2008) CrossRefGoogle Scholar
  32. 32.
    A. Bacigalupo, L. Gambarotta, ZAMM - J. Appl. Math. Mech. 90, 796 (2010) CrossRefGoogle Scholar
  33. 33.
    A. Bacigalupo, Meccanica 49, 1407 (2014) MathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Lesièar, Z. Tonkoviæ, J. Soriæ, Comput. Mech. 54, 425 (2014) MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Uchida, N. Tada, Key Eng. Mater. 626, 74 (2014) CrossRefGoogle Scholar
  36. 36.
    M. Uchida, K. Suzuki, Y. Kaneko, Key Eng. Mater. 725, 456 (2016) CrossRefGoogle Scholar
  37. 37.
    P. Trovalusci, M. Ostoja-Starzewski, M.L.D. Bellis, A. Murrali, Eur. J. Mech. A: Solids 49, 396 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    E.W.C. Coenen, V.G. Kouznetsova, M.G.D. Geers, Int. J. Numer. Methods Eng. 83, 1180 (2010) CrossRefGoogle Scholar
  39. 39.
    G. Rosi, A. Auffray, Wave Motion 63, 120 (2016) CrossRefGoogle Scholar
  40. 40.
    H. Reda, I. Goda, J.F. Ganghoffer, G. L’Hostic, H. Lakiss, Compos. Struct. 161, 540 (2017) CrossRefGoogle Scholar
  41. 41.
    R. Hu, C. Oskay, Comput. Methods Appl. Mech. Eng. 342, 1 (2018) ADSCrossRefGoogle Scholar
  42. 42.
    J. Li, Int. J. Solids Struct. 48, 3336 (2011) CrossRefGoogle Scholar
  43. 43.
    M. Uchida, Y. Kaneko, Heliyon 4, e00578 (2018) CrossRefGoogle Scholar
  44. 44.
    J. Marty, J. Réthoré, Int. J. Solids Struct. 88–89, 263 (2016) CrossRefGoogle Scholar
  45. 45.
    D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 31, 1951 (1983) CrossRefGoogle Scholar
  46. 46.
    J.W. Hutchinson, Proc. R. Soc. London A 348, 101 (1976) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Engineering, Osaka City UniversitySumiyoshi-kuJapan

Personalised recommendations