Advertisement

Magnetic field controlled induced transparency by Autler–Townes splitting in pseudo-elliptic quantum ring

  • Doina BejanEmail author
  • Cristina Stan
  • Ovidiu Toma
Regular Article
  • 6 Downloads

Abstract

We theoretically investigated the effects of magnetic field and of the parameters of control and probe lasers on the transparency induced through Autler–Townes splitting (ATS) in GaAs/GaAlAs pseudo-elliptic quantum ring. We showed that if equal decay rates are considered the investigation of the electromagnetically induced transparency phenomenon can be done only in the strong coupling regime. Our study reveals that the quantum system is in a Λ configuration in the absence of external fields but, in the presence of the magnetic field, it may present simultaneously many configurations (of Λ, Ξ and V type) that allow the occurrence of transparency, separated by very narrow regions of magnetic fields where no configuration is active. The magnetic field determines almost periodically the switch between configurations. We demonstrated that in V (Ξ) configurations the ATS requires the greatest (lowest) intensity of the control laser and of the energy of the probe laser.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    R.G. Beausoleil, W.J. Munro, D.A. Rodrigues, T.P. Spiller, J. Mod. Optics 51, 2441 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photonics 3, 706 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    A.H. Savafi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichfield, M. Winger, Q. Lin, J. T. Hill, D.D. Chang, O. Painter, Nature 472, 62 (2011) ADSGoogle Scholar
  5. 5.
    P.M. Anisimov, J.P. Dowling, B.C. Sanders, Phys. Rev. Lett. 107, 163604 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    J. Clarke, H. Chen, W.A. van Wijngaarden, Appl. Optics 40, 2047 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    K.J. Boller, A. Imamoglu, S. Harris, Phys. Rev. Lett. 66, 2593 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    M. Xiao, Y.Q. Li, S.Z. Jin, J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995) ADSCrossRefGoogle Scholar
  9. 9.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999) ADSCrossRefGoogle Scholar
  10. 10.
    J.E. Field, K.H. Hahn, S.E. Harris, Phys. Rev. Lett. 67, 3062 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    G.R. Welch, G.G. Padmabandu, E.S. Fry, M.D. Lukin, D.E. Nikonov, F. Sander, M.O. Scully, A. Weis, F.K. Tittel, Found. Phys. 28, 621 (1998) CrossRefGoogle Scholar
  12. 12.
    J.M. Zhao, W.B. Yin, L.R. Wang, L.T. Xiao, S.T. Jia, Chin. Phys. 11, 241 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    A. Lazoudis, T. Kirova, E.H. Ahmed, P. Qi, J. Huennekens, A.M. Lyyra, Phys. Rev. A 83, 063419 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    X. Lu, X. Miao, J. Bai, L. Pei, M. Wang, Y. Gao, L.-A. Wu, P. Fu, R. Wang, Z. Zuo, J. Phys. B: At. Mol. Opt. Phys. 48, 055003 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    C. Zhu, C. Tan, G. Huang, Phys. Rev. A 87, 043813 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    P. Anisimov, O. Kocharovskaya, J. Mod. Opt. 55, 3159 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    T.Y. Abi-Salloum, Phys. Rev. A 81, 053836 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    L. Giner, L. Veissier, B. Sparkes, A.S. Sheremet, A. Nicolas, O.S. Mishina, M. Scherman, S. Burks, I. Shomroni, D.V. Kupriyanov, P.K. Lam, E. Giacobino, J. Laurat, Phys. Rev. A 87, 013823 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    C. Tan, G. Huang, J. Opt. Soc. Am. B 31, 704 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, G. Raithel, New. J. Phys. 20, 073024 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    H. Lee, Y. Rostovtsev, M.O. Scully, Phys. Rev. A 62, 063804 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Phys. Rev. Lett. 84, 1019 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    S. Hanna, B. Eichenberg, D.A. Firsov, L.E. Vorobjev, V.M. Ustinov, Physica E 75, 93 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    M. Phillips, H. Wang, Opt. Lett. 28, 831 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    S.-M. Ma, H. Xu, B.S. Ham, Opt. Express 17, 14902 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, R. Binder, Phys. Rev. Lett. 91, 183602 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    H. Kang, J.S. Kim, S.I. Hwang, Y.H. Park, D. Ko, J. Lee, Opt. Express 16, 15728 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    H. Gotoh, H. Komada, T. Saitoh, H. Ando, J. Temmyo, Phys. Rev. B 71, 195334 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    S. Marcinkevicius, A. Gushterov, J.P. Reithmaier, Appl. Phys. Lett. 92, 041113 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    D. Bejan, C. Trusca, Rom. Rep. Phys. 70, 412 (2018) Google Scholar
  31. 31.
    J. Jayarubi, A.J. Peter, C.W. Lee, Eur. Phys. J. D 73, 63 (2019) ADSCrossRefGoogle Scholar
  32. 32.
    Z. Raki, H.R. Askari, Superlattices Microstruct. 65, 161 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    H.R. Askari, Z. Raki, Superlattices Microstruct. 71, 82 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    M. Mirzaei, H.R. Askari, Z. Raki, Superlattices Microstruct. 74, 61 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    V. Pavlovic, L. Stevanovic, Superlattices Microstruct. 92, 10 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014) ADSCrossRefGoogle Scholar
  37. 37.
    D. Bejan, Opt. Mater. 67, 145 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    D. Bejan, Eur. Phys. J. B 90, 54 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    E.C. Niculescu, C. Stan, G. Tiriba, C. Trusca, Eur. J. Phys. B 90, 100 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 75, 827 (2018) ADSCrossRefGoogle Scholar
  41. 41.
    A. Zamani, F. Setareh, T. Azargoshasb, E. Niknam, Superlattices Microstruct. 115, 40 (2018) ADSCrossRefGoogle Scholar
  42. 42.
    D. Bejan, C. Stan, Philos. Mag. 99, 492 (2019) ADSCrossRefGoogle Scholar
  43. 43.
    D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 78, 207 (2018) ADSCrossRefGoogle Scholar
  44. 44.
    D. Bejan, C. Stan, Eur. Phys. J. Plus 134, 127 (2019) CrossRefGoogle Scholar
  45. 45.
    D. Bejan, G. Raseev, Surf. Sci. 528, 163 (2003) ADSCrossRefGoogle Scholar
  46. 46.
    G. Liu, K. Guo, C. Wang, Physica B 407, 2334 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Ann. Phys. 524, 327 (2012) CrossRefGoogle Scholar
  48. 48.
    C.M. Duque, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 143, 81 (2013) CrossRefGoogle Scholar
  49. 49.
    R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016) ADSCrossRefGoogle Scholar
  50. 50.
    Y.D. Sibirmovskii, I.S. Vasil’evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Semiconductors 49, 638 (2015) ADSCrossRefGoogle Scholar
  51. 51.
    R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edn. (John Wiley & Sons, New York, 1989) Google Scholar
  52. 52.
    R. Loudon, in The quantum theory of light, 2nd edn. (Clarendon Press, Oxford, 1988), Chaps. 1 and 2 Google Scholar
  53. 53.
    R.W. Boyd, in Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008), Chap. 6 Google Scholar
  54. 54.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000) ADSCrossRefGoogle Scholar
  55. 55.
    T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, New York, 2010) Google Scholar
  56. 56.
    D. Bejan, E.C. Niculescu, Physica E 75, 149 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Physics, University of BucharestBucharestRomania
  2. 2.Physics Department, Politehnica, University of BucharestBucharestRomania

Personalised recommendations