Advertisement

On the response of power law distributions to fluctuations

  • Andrea Di VitaEmail author
Regular Article
  • 34 Downloads

Abstract

Both in physical and in non-physical systems, the probability of extreme events depends on the slope of the tail of a distribution function. Prediction of this slope is often jeopardized by either poor knowledge of dynamics or statistical uncertainties. In many cases, however, the system attains a relaxed state, and extreme events correspond to large fluctuations near this state. Rather than starting from full (and often unavailable) knowledge of dynamics, we assume that a relaxed state exists and derive a necessary condition for its stability against fluctuations of arbitrary amplitude localized in the tail. In many problems, for suitably chosen variables this tail resembles either an exponential distribution or a power law. We take a q-exponential as a proxy of the tail; its slope depends on the dimensionless parameter q (q = 1 corresponds to an exponential). In turn, q-exponentials describe maxima of the non-extensive entropy Sq, and probabilities of fluctuations near a Sq = max state follow a generalized Einstein’s rule [E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2002)]. This rule provides the desired condition of stability, which allows us to write down a set of rules for semi-anaytical computation of the value qc of q in the relaxed state even with limited knowledge of dynamics. We apply these rules to a problem in econophysics [J.R. Sànchez, R. Lopez-Ruiz, Eur. Phys. J. Special Topics 143, 241 (2007)] and retrieve the main results of numerical solutions, namely the transition of a relaxed distribution of wealth from an exponential to a Pareto-like behaviour in the tail by suitable tuning of the relevant control parameters. A similar discussion holds for the scale parameter of lognormal distributions; we retrieve the results of [Z.N. Wu, J. Li, C.Y. Bai, Entropy 19, 56 (2017)].

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.D. Landau, E.M. Lifshitz,Statistical Physics (Pergamon, Oxford, 1959) Google Scholar
  2. 2.
    H. Risken,The Fokker-Planck Equation (Springer, Berlin, 1989) Google Scholar
  3. 3.
    A. Di Vita, Phys. Rev E 81, 041137 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    R. Dengler, Another derivation of generalized Langevin equations, https://arXiv:1506.02650 (2015)
  5. 5.
    X. Gabaix, Q. J. Econ. 114, 739 (1999) CrossRefGoogle Scholar
  6. 6.
    Z.N. Wu, J. Li, C.Y. Bai, Entropy 19, 56 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    G. Drazer, H.S. Wio, C. Tsallis, Phys. Rev. E 61, 1417 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R219 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    L. Borland, Phys. Rev E 57, 6634 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    G.A. Casas, F.D. Nobre, E.M.F. Curado, Phys. Rev. E 86, 061136 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    V. Schwaemmle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 70, 107 (2009) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R.S. Wedemann, A.R. Plastino, C. Tsallis, Phys. Rev. E 94, 062105 (2016) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Jespersen, R. Metzler, H.C. Fogedby, Phys. Rev. E 59, 2736 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    J. Nolan,Stable distributions: models for heavy-tailed data (Birkhauser, New York, 2003) Google Scholar
  15. 15.
    D. Schertzer, M. Larcheveque, V.V. Yanovsky, S. Lovejoy, J. Math. Phys. 42, 200 (2001) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Bologna, C. Tsallis, P. Grigolini, Phys. Rev. E 62, 2213 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    E.K. Lenzi, L.C. Malacarne, R.S. Mendes, I.T. Pedron, Physica A 319, 245 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    D. Del Castillo Negrete, Fractional Calculus: Basic Theory and Applications – Part I, inLectures presented at the Institute of Mathematics, UNAM, August 2005, Mexico City, Mexico; Revistaelectrónica de contenido matemàtico 16, 6 (2005) Google Scholar
  19. 19.
    M.K. Lenzi, E.K. Lenzi, M.F. de Andrade, L.R. Evangelista, L.R. da Silva, Fractional Nonlinear Diffusion Equation: Exact Solutions, inProceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, July 19–21, 2006 Google Scholar
  20. 20.
    I. Tristani, Commun. Math. Sci. 13, 1243 (2015) MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    W. Gong, Y. Liu, V. Misra, D. Towsley, On the Tails of Web File Size Distributions, inProceedings of the Thirty-Ninth Annual Allerton Conference on Communication, Control, and Computing (Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, IL, 2001), p. 192–201 Google Scholar
  23. 23.
    M. Mitzenmacher, Internet Math. 1, 226 (2003) CrossRefGoogle Scholar
  24. 24.
    M.L. Goldstein, S.A. Morris, G.G. Yen, Eur. Phys. J. B 41, 255 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Markovic, C. Gros, Phys. Rep. 536, 41 (2014) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Datta, G.W. Delius, R. Law, M.J. Plank, J. Math. Biol. 63, 779 (2011) CrossRefGoogle Scholar
  28. 28.
    U. Tirnakli, E.P. Sci. Rep. 6, 23644 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    J.Gonzalez- Estevez, M.G. Cosenza, O. Alvarez- Llamoza, R. Lopez- Ruiz, Physica A 388, 3521 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J.S. Andrade Jr., G.F.T. da Silva, A.A. Moreira, F.D. Nobre, E.M.F. Curado, Phys. Rev. Lett. 105, 260601 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988) ADSCrossRefGoogle Scholar
  33. 33.
    C. Tsallis, R.S. Mendes, A. Plastino, Physica A 261, 534 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Boon, C. Tsallis, Europhys. News 36, 185 (2005); see also other papers in the same issue ADSGoogle Scholar
  35. 35.
    E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2002) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Matolcsi, P. Van, On the continuity and Lesche stability of Tsallis and Rényi entropies and q-expectation values, https://arXiv:0910.1918 (2009)
  37. 37.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Wada, A.M. Scarfone, Phys. Lett. A 335, 351 (2005) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Ruseckas, B. Kaulakys, Phys. Rev. E 84, 051125 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    J.J. Brey, J.M. Casado, M. Morillo, Phys. Rev. A 30, 1535 (1984) ADSCrossRefGoogle Scholar
  41. 41.
    J. Cartwright,Roll over, Boltzmann (Physics World, May 2014) Google Scholar
  42. 42.
    J.R. Sànchez, R. Lopez-Ruiz, Eur. Phys. J. Special Topics 143, 241 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    J. Gonzalez-Estevez, M.G. Cosenza, R. Lopez-Ruiz, J.R. Sanchez, Physica A 387, 4637 (2008) ADSCrossRefGoogle Scholar
  44. 44.
    A. Di Vita, Exponential or Power Law? How to Select a Stable Distribution of Probability in a Physical System, inProceedings MDPI (2018), Vol. 2, p. 156 CrossRefGoogle Scholar
  45. 45.
    G. Orwell,Nineteen Eighty-Four (Secker & Warburg, London, 1949) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Università di GenovaGenovaItaly

Personalised recommendations