Advertisement

An electronic avalanche model for metal–insulator transition in two dimensional electron gas

  • Morteza Nattagh NajafiEmail author
Regular Article
  • 18 Downloads

Abstract

In this paper, we present an electronic avalanche model for the transport of electrons in the disordered two-dimensional (2D) electron gas which has the potential to describe the 2D metal–insulator transition (MIT) in the zero electron–electron interaction limit. The disorder is considered to be uncorrelated-Coulomb noise with a uniform distribution. In this model we sub-divide the system to some virtual cells each of which has a linear size of the order of phase coherence length of the system. Using Thomas-Fermi-Dirac theory we propose some simple energy functions for the cells and using the thermodynamics of 2DEG we develop some rules for the charge transfer between the cells. A second order transition line arises from our model with some similarities with the experiments. The compressibility of the system also diverges on this line. We characterize this (disorder-driven) phase transition which is between the non-percolating phase and the percolating phase (in which the system shows metallic behavior) and obtain some geometrical critical exponents. The fractal dimension of the exterior frontier of the electronic avalanches on the transition line is compatible with the percolation theory, whereas the other exponents are different. The exponents are robust against disorder in the low disordered 2DEGs and change considerably in the high disordered ones.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    E. Abrahams et al., Rev. Mod. Phys. 73, 251 (2001) CrossRefGoogle Scholar
  2. 2.
    S.V. Kravchenko, M.P. Sarachik, Rep. Prog. Phys. 67, 1 (2004) CrossRefGoogle Scholar
  3. 3.
    E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979) CrossRefGoogle Scholar
  4. 4.
    G.J. Dolan, D.D. Osheroff, Phys. Rev. Lett. 43, 721 (1979) CrossRefGoogle Scholar
  5. 5.
    S.V. Kravchenko et al., Phys. Rev. B 51, 7038 (1995) CrossRefGoogle Scholar
  6. 6.
    Y. Hanein et al., Phys. Rev. Lett. 80, 288 (1998) CrossRefGoogle Scholar
  7. 7.
    M.Y. Simmons et al., Phys. Rev. Lett. 80, 1292 (1998) CrossRefGoogle Scholar
  8. 8.
    A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield, D.A. Linfield, Phys. Rev. Lett. 87, 126802 (2001) CrossRefGoogle Scholar
  9. 9.
    J. Yoon, C.C. Li, D. Shahar, D.C. Tsui, M. Shayegan, Phys. Rev. Lett. 82, 1744 (1999) CrossRefGoogle Scholar
  10. 10.
    L. Li, Y.Y. Proskuryakov, A.K. Savchenko, E.H. Linfield, D.A. Ritchie, Phys. Rev. Lett. 90, 076802 (2003) CrossRefGoogle Scholar
  11. 11.
    H. Noh et al., Phys. Rev. B 68, 165308 (2003) CrossRefGoogle Scholar
  12. 12.
    V.M. Pudalov et al., Phys. Rev. Lett. 91, 126403 (2003) CrossRefGoogle Scholar
  13. 13.
    D. Popovic, A.B. Fowler, S. Washburn, Phys. Rev. Lett. 79, 1543 (1997) CrossRefGoogle Scholar
  14. 14.
    A.A. Shashkin, V.T. Dolgopolov, G.V. Kravchenko, Phys. Rev. B 49, 14486 (1994) CrossRefGoogle Scholar
  15. 15.
    M.Y. Simmons et al., Phys. Rev. Lett. 84, 2489 (2000) CrossRefGoogle Scholar
  16. 16.
    A. Gold et al., Phys. Rev. B 33, 2495 (1986) CrossRefGoogle Scholar
  17. 17.
    S. Sarma et al., Solid State Commun. 135, 579 (2005) CrossRefGoogle Scholar
  18. 18.
    B.L. Altshuler, A.G. Aronov, Electron–electron interaction in disordered conductors, in Electron–Electron Interactions in Disordered Systems, edited by A.L. Efros, M. Pollak (Elsevier, 1985), pp. 1–153 Google Scholar
  19. 19.
    D. Backes, R. Hall, M. Pepper, H. Beere, D. Ritchie, V. Narayan, Phys. Rev. B 92, 235427 (2015) CrossRefGoogle Scholar
  20. 20.
    H. Bruus et al., Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, 2004) Google Scholar
  21. 21.
    Y. Meir, Phys. Rev. Lett. 83, 3506 (1999) CrossRefGoogle Scholar
  22. 22.
    S. Das Sarma et al., Phys. Rev. Lett. 94, 136401 (2005) CrossRefGoogle Scholar
  23. 23.
    M.J. Uren, R.A. Davies, M. Kaveh, M. Pepper, J. Phys. C 14, 5737 (1981) CrossRefGoogle Scholar
  24. 24.
    D.J. Bishop, D.C. Tsui, R.C. Dynes, Phys. Rev. Lett. 44, 1153 (1980) CrossRefGoogle Scholar
  25. 25.
    S. Das Sarma et al., Rev. Mod. Phys. 83, 407 (2011) CrossRefGoogle Scholar
  26. 26.
    V.Y. Butko, P.W. Adams, Nature 409, 161 (2001) CrossRefGoogle Scholar
  27. 27.
    P.V. Lin, D. Popović, Phys. Rev. Lett. 114, 166401 (2015) CrossRefGoogle Scholar
  28. 28.
    S.A. Vitkalov, H. Zheng, K.M. Mertes, M.P. Sarachik, T.M. Klapwijk, Phys. Rev. Lett. 87, 086401 (2001) CrossRefGoogle Scholar
  29. 29.
    A.L. Efros, B.I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975) CrossRefGoogle Scholar
  30. 30.
    M.P. Sarachik, S.V. Kravchenko, Proc. Natl. Acad. Sci. USA 96, 5900 (1999) CrossRefGoogle Scholar
  31. 31.
    R. Heemskerk, T.M. Klapwijk, Phys. Rev. B 58, R1754 (1998) CrossRefGoogle Scholar
  32. 32.
    V.M. Pudalov, G. Brunthaler, A. Prinz, G. Bauer, JETP Lett. 70, 48 (1999) CrossRefGoogle Scholar
  33. 33.
    J. Jaroszynski, D. Popovic, T.M. Klapwijk, Phys. Rev. Lett. 89, 276401 (2002) CrossRefGoogle Scholar
  34. 34.
    Y. Hanein et al., Phys. Rev. Lett. 80, 1288 (1998) CrossRefGoogle Scholar
  35. 35.
    Y. Hanein et al., Phys. Rev. B 58, R7520 (1998) CrossRefGoogle Scholar
  36. 36.
    V.M. Pudalov, G. Brunthaler, A. Prinz, G. Bauer, Effect ofthe in-plane magnetic field on conduction of the Si-inversion layer: magnetic field driven disorder, https://arXiv:cond-mat/0103087 (2001)
  37. 37.
    S. Bogdanovich, D. Popovic, Phys. Rev. Lett. 88, 236401 (2002) CrossRefGoogle Scholar
  38. 38.
    A.A. Shashkin, S.V. Kravchenko, T.M. Klapwijk, Phys. Rev. Lett. 87, 266402 (2001) CrossRefGoogle Scholar
  39. 39.
    T.C. Rödel et al., Phys. Rev. B 96, 041121 (2017) CrossRefGoogle Scholar
  40. 40.
    S. Muff et al., Appl. Surf. Sci. 432, 41 (2018) CrossRefGoogle Scholar
  41. 41.
    S. McKeown Walker et al., Phys. Rev. Lett. 113, 177601 (2014) CrossRefGoogle Scholar
  42. 42.
    N.C. Plumb et al., Phys. Rev. Lett. 113, 086801 (2014) CrossRefGoogle Scholar
  43. 43.
    A.F. Santander-Syro et al., Phys. Rev. B 86, 121107 (2012) CrossRefGoogle Scholar
  44. 44.
    T.C. Rödel et al., Phys. Rev. Mater. 2, 051601 (2018) CrossRefGoogle Scholar
  45. 45.
    A. Camjayi, K. Haule, V. Dobrosavljevic, G. Kotliar, Nat. Phys. 4, 932 (2008) CrossRefGoogle Scholar
  46. 46.
    M.M. Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar, Phys. Rev. B 85, 085133 (2012) CrossRefGoogle Scholar
  47. 47.
    J. Vucicevic et al., Phys. Rev. B 88, 075143 (2013) CrossRefGoogle Scholar
  48. 48.
    K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005) CrossRefGoogle Scholar
  49. 49.
    L. Hunpyo, H.O. Jeschke, R. Valentí. Phys. Rev. B 93, 224203 (2016) CrossRefGoogle Scholar
  50. 50.
    A. Punnoose, A.M. Finkelstein, Science 310, 289 (2005) CrossRefGoogle Scholar
  51. 51.
    R. Koushik, M. Baenninger, V. Narayan, S. Mukerjee, M. Pepper, I. Farrer, D.A. Ritchie, A. Ghosh, Phys. Rev. B 83, 085302 (2011) CrossRefGoogle Scholar
  52. 52.
    T.S. Nunner, G. Zaránd, F. Von Oppen, Phys. Rev. Lett. 100, 236602 (2008) CrossRefGoogle Scholar
  53. 53.
    M.V. Sadovskii, Diagrammatics (World Scientific, 2006) Google Scholar
  54. 54.
    Y. Yaish et al., Phys. Rev. Lett. 84, 4954 (2000) CrossRefGoogle Scholar
  55. 55.
    Y. Hanein, U. Meirav, D. Shahar, C.C. Li, D.C. Tsui, H. Shtrikman, Phys. Rev. Lett. 80, 1288 (1998) CrossRefGoogle Scholar
  56. 56.
    Y. Hanein, D. Shahar, J. Yoon, C.C. Li, D.C. Tsui, H. Shtrikman, Phys. Rev. B 58, R7520 (1998) CrossRefGoogle Scholar
  57. 57.
    Y. Hanein et al., Phys. Rev. B 58, R13338 (1998) CrossRefGoogle Scholar
  58. 58.
    A.A. Shashkin et al., Phys. Rev. Lett. 73, 3141 (1994) CrossRefGoogle Scholar
  59. 59.
    V.T. Dolgapolov et al., JETP Lett. 62, 162 (1995) Google Scholar
  60. 60.
    I.V. Kukuskin et al., Phys. Rev. B 53, R13260 (1996) CrossRefGoogle Scholar
  61. 61.
    S. He, X.C. Xie, Phys. Rev. Lett. 80, 3324 (1998) CrossRefGoogle Scholar
  62. 62.
    S. Das Sarma et al., Phys. Rev. B 88, 155310 (2013) CrossRefGoogle Scholar
  63. 63.
    A.G. Hunt, Philos. Mag. B 81, 875 (2001) CrossRefGoogle Scholar
  64. 64.
    S.V. Kranchenko et al., Phys. Rev. B 50, 8039 (1994) CrossRefGoogle Scholar
  65. 65.
    S.V. Kranchenko et al., Phys. Rev. B 51, 7038 (1995) CrossRefGoogle Scholar
  66. 66.
    S.V. Kranchenko et al., Phys. Rev. Lett. 77, 4938 (1996) CrossRefGoogle Scholar
  67. 67.
    W.R. Clarke, C.E. Yasin, A.R. Hamilton, A.P. Micolich, M.Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper, D.A. Ritchie, Nat. Phys. 4, 55 (2008) CrossRefGoogle Scholar
  68. 68.
    A. Gold, W. Gotze, C. Mazure, F. Koch, in Proceedings of the 17th International Conference on Low-Temperature Physics, LT–17, Karlsruhe, 1984 (Elsevier, Amsterdam, 1984) Google Scholar
  69. 69.
    R.G. Parr, in Horizons of Quantum Chemistry (Springer, Netherlands, 1980), p. 5 Google Scholar
  70. 70.
    H. Gould, J. Tobochnik, Computer Simulation Methods (Addison-Wesley, Reading, 1996) Google Scholar
  71. 71.
    J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976) CrossRefGoogle Scholar
  72. 72.
    N. Goldenfeld, Lectures on phase transitions and the renormalization group (Westview Press, 1992) Google Scholar
  73. 73.
    M.N. Najafi, S. Moghimi-Araghi, S. Rouhani, Phys. Rev. E 85, 051104 (2012) CrossRefGoogle Scholar
  74. 74.
    H. Dashti-Naserabadi, M.N. Najafi, Phys. Rev. E 91, 052145 (2015) MathSciNetCrossRefGoogle Scholar
  75. 75.
    M.S. Girvin, in Topological aspects of low dimensional systems (Springer, Berlin, Heidelberg, 1999), p. 53 Google Scholar
  76. 76.
    J. Cardy, Ann. Phys. 318, 81 (2005) CrossRefGoogle Scholar
  77. 77.
    L.A. Tracy, E.H. Hwang, K. Eng, G.A.T. Eyck, E.P. Nordberg, K. Childs, M.S. Carroll, M.P. Lilly, S. Das Sarma, Phys. Rev. B 79, 235307 (2009) CrossRefGoogle Scholar
  78. 78.
    M.N. Najafi, S. Moghimi-Araghi, S. Rouhani, J. Phys. A: Math. Theor. 45, 095001 (2012) CrossRefGoogle Scholar
  79. 79.
    M.N. Najafi, J. Stat. Mech.: Theory Exp. 2015, P05009 (2015) CrossRefGoogle Scholar
  80. 80.
    J. Cheraghalizadeh et al., Phys. Rev. E 97, 042128 (2018) CrossRefGoogle Scholar
  81. 81.
    G. Grosso, G. Pastori Parravicini, Solid state physics (Academic Press, 2014) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations