Advertisement

Understanding one-dimensional topological Kondo insulator: poor man’s non-uniform antiferromagnetic mean-field theory versus quantum Monte Carlo simulation

  • Yin ZhongEmail author
Regular Article
  • 17 Downloads

Abstract

Topological Kondo insulator (TKI) is an essential example of interacting topological insulator, where electron’s correlation effect plays a key role. However, most of our understanding on this timely issue comes from numerical simulations, (particularly in one-spatial dimension) which exactly includes correlation effect but is black box for extracting underlying physics. In this work, we use a non-uniform antiferromagnetic mean-field (nAFM) theory to understand the underlying physics in a TKI model, the 1D p-wave periodic Anderson model (p-PAM). Comparing with numerically exact quantum Monte Carlo simulation, we find that nAFM theory is an excellent approximation for ground-state properties when onsite Hubbard interaction is weak. This emphasizes the dominating antiferromagnetic correlation in this system and local antiferromagnetic picture captures the qualitative nature of interacting many-body ground state. Adding extra conduction electron band to p-PAM leads to a quantum phase transition from Haldane phase into topological trivial phase. We believe these results may be helpful for understanding novel physics in interacting TKI materials such as SmB6 and other related compounds.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) CrossRefGoogle Scholar
  2. 2.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) CrossRefGoogle Scholar
  3. 3.
    N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018) CrossRefGoogle Scholar
  4. 4.
    A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016) CrossRefGoogle Scholar
  5. 5.
    M. Dzero, J. Xia, V. Galitski, P. Coleman, Annu. Rev. Condens. Matter Phys. 7, 249 (2016) CrossRefGoogle Scholar
  6. 6.
    M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010) CrossRefGoogle Scholar
  7. 7.
    G. Li et al., Science 346, 1208 (2014) CrossRefGoogle Scholar
  8. 8.
    B.S. Tan et al., Science 349, 287 (2015) CrossRefGoogle Scholar
  9. 9.
    V. Alexandrov, P. Coleman, O. Erten, Phys. Rev. Lett. 114, 177202 (2015) CrossRefGoogle Scholar
  10. 10.
    O. Erten, P. Ghaemi, P. Coleman, Phys. Rev. Lett. 116, 046403 (2016) CrossRefGoogle Scholar
  11. 11.
  12. 12.
    O. Erten, P.-Y. Chang, P. Coleman, A.M. Tsvelik, Phys. Rev. Lett. 119, 057603 (2017) CrossRefGoogle Scholar
  13. 13.
    A. Thomson, S. Sachdev, Phys. Rev. B 93, 125103 (2016) CrossRefGoogle Scholar
  14. 14.
    D. Chowdhury, I. Sodemann, T. Senthil, Nat. Commun. 9, 1766 (2018) CrossRefGoogle Scholar
  15. 15.
    I. Sodemann, D. Chowdhury, T. Senthil, Phys. Rev. B 97, 045152 (2018) CrossRefGoogle Scholar
  16. 16.
    Y. Zhong, Y. Liu, H.-G. Luo, Eur. Phys. J. B 90, 147 (2017) CrossRefGoogle Scholar
  17. 17.
    F.T. Lisandrini, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 96, 075124 (2017) CrossRefGoogle Scholar
  18. 18.
    Y. Zhong, Y. Liu, Q. Wang, K. Liu, H.-F. Song, H.-G. Luo, Front. Phys. 14, 23602 (2019) CrossRefGoogle Scholar
  19. 19.
    I. Hagymási, C. Hubig, U. Schollwöck, Phys. Rev. B 99, 075145 (2019) CrossRefGoogle Scholar
  20. 20.
    A. Mezio, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 92, 205128 (2015) CrossRefGoogle Scholar
  21. 21.
    I. Hagymasi, O. Legeza, Phys. Rev. B 93, 165104 (2016) CrossRefGoogle Scholar
  22. 22.
    A. Rüegg, S.D. Huber, M. Sigrist, Phys. Rev. B 81, 155118 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations