Understanding one-dimensional topological Kondo insulator: poor man’s non-uniform antiferromagnetic mean-field theory versus quantum Monte Carlo simulation

  • Yin ZhongEmail author
Regular Article


Topological Kondo insulator (TKI) is an essential example of interacting topological insulator, where electron’s correlation effect plays a key role. However, most of our understanding on this timely issue comes from numerical simulations, (particularly in one-spatial dimension) which exactly includes correlation effect but is black box for extracting underlying physics. In this work, we use a non-uniform antiferromagnetic mean-field (nAFM) theory to understand the underlying physics in a TKI model, the 1D p-wave periodic Anderson model (p-PAM). Comparing with numerically exact quantum Monte Carlo simulation, we find that nAFM theory is an excellent approximation for ground-state properties when onsite Hubbard interaction is weak. This emphasizes the dominating antiferromagnetic correlation in this system and local antiferromagnetic picture captures the qualitative nature of interacting many-body ground state. Adding extra conduction electron band to p-PAM leads to a quantum phase transition from Haldane phase into topological trivial phase. We believe these results may be helpful for understanding novel physics in interacting TKI materials such as SmB6 and other related compounds.

Graphical abstract


Solid State and Materials 


  1. 1.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018) ADSCrossRefGoogle Scholar
  4. 4.
    A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    M. Dzero, J. Xia, V. Galitski, P. Coleman, Annu. Rev. Condens. Matter Phys. 7, 249 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    G. Li et al., Science 346, 1208 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    B.S. Tan et al., Science 349, 287 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    V. Alexandrov, P. Coleman, O. Erten, Phys. Rev. Lett. 114, 177202 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    O. Erten, P. Ghaemi, P. Coleman, Phys. Rev. Lett. 116, 046403 (2016) ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
    O. Erten, P.-Y. Chang, P. Coleman, A.M. Tsvelik, Phys. Rev. Lett. 119, 057603 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    A. Thomson, S. Sachdev, Phys. Rev. B 93, 125103 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    D. Chowdhury, I. Sodemann, T. Senthil, Nat. Commun. 9, 1766 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    I. Sodemann, D. Chowdhury, T. Senthil, Phys. Rev. B 97, 045152 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhong, Y. Liu, H.-G. Luo, Eur. Phys. J. B 90, 147 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    F.T. Lisandrini, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 96, 075124 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhong, Y. Liu, Q. Wang, K. Liu, H.-F. Song, H.-G. Luo, Front. Phys. 14, 23602 (2019) CrossRefGoogle Scholar
  19. 19.
    I. Hagymási, C. Hubig, U. Schollwöck, Phys. Rev. B 99, 075145 (2019) ADSCrossRefGoogle Scholar
  20. 20.
    A. Mezio, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 92, 205128 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    I. Hagymasi, O. Legeza, Phys. Rev. B 93, 165104 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    A. Rüegg, S.D. Huber, M. Sigrist, Phys. Rev. B 81, 155118 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations