Advertisement

Frequency mismatch induces Bellerophon state and mixed explosive synchronization in a two-dimensional lattice

  • Liu-Hua ZhuEmail author
  • Wu-Jie Yuan
Regular Article
  • 8 Downloads

Abstract

We study synchronization of coupled phase oscillators with linear natural frequencies in a two-dimensional lattice. The effects of two typical frequency layouts on synchronization dynamics are analyzed and discussed. The results show that the two typical frequency layouts induce two interesting dynamical behaviors. One is the Bellerophon state, the other is a mixed explosive synchronization. The Bellerophon state is a transitional state between the incoherent state and the π state, in which neither the instantaneous phases nor the instantaneous frequencies of the oscillators are locked. But the oscillators split into a series of discrete clusters and each cluster shares a unique effective frequency. The mixed explosive synchronization means that the synchronization transition is not a sudden jump, but always accompanied with continuous phase transitions. Our current work may provide a new insight into understanding of the Bellerophon state and the mixed explosive synchronization in homogenous networks.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Pivkosky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003) Google Scholar
  2. 2.
    S. Boccaletti, The Synchronized Dynamics of Complex Systems (Elsevier, Amsterdam, 2008) Google Scholar
  3. 3.
    F. Dorfler, F. Bullo, SIAM J. Control. Optim. 50, 1616 (2012) MathSciNetCrossRefGoogle Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.A. Acebron, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J. Lu, H. Liu, J. Chen, Synchronization in Complex Dynamical Networks (Higher Education Press, Beijing, 2016) Google Scholar
  7. 7.
    R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendina-Nadal, Z. Wang, Y. Zou, Phys. Rep. 660, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.D. da Fonseca, C.V. Abud, J. Stat. Mech. 18, 103204 (2018) CrossRefGoogle Scholar
  12. 12.
    C.A. Moreira, M.A.M. de Aguiar, Physica A 514, 487 (2019) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984) Google Scholar
  14. 14.
    S.H. Strogatz, Physica D 143, 1 (2000) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Z. Zheng, G. Hu, B. Hu, Phys. Rev. Lett. 81, 5318 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    S.H. Strogatz, R.E. Mirollo, Physica D 31, 143 (1988) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Hong, M.Y. Choi, Phys. Rev. E 65, 047104 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    J. Rogge, D. Aeyels, J. Phys. A 37, 11135 (2004) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Ma, K. Yoshikawa, Phys. Rev. E 79, 046217 (2009) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H.F. El-Nashar, H.A. Cerdeira, Commun. Nonlinear Sci. Numer. Simulat. 16, 4508 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    W. Chen, W. Liu, Y. Lan, J. Xiao, Commun. Nonlinear Sci. Numer. Simulat. 70, 271 (2019) ADSCrossRefGoogle Scholar
  22. 22.
    J. Davidsen, R. Kapral, Phys. Rev. E 66, 055202 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    T.E. Lee, H. Tam, G. Refael, J.L. Rogers, M.C. Cross, Phys. Rev. E 82, 036202 (2010) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Wu, J. Xiao, G. Hu, M. Zhan, Europhys. Lett. 97, 40005 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    I. Leyva, A. Navas, I. Sendina-Nadal, J.A. Almendral, J.M. Buld, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 3, 01281 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    J. Gomez-Gardenes, S. Gomez, A. Arenas, Y. Moreno, Phys. Rev. Lett. 106, 128701 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    L. Zhu, L. Tian, D. Shi, Phys. Rev. E 88, 042921 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    P.S. Skardal, D. Taylor, J. Sun, Phys. Rev. Lett. 113, 144101 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    P.S. Skardal, A. Arenas, Phys. Rev. E 89, 062811 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zou, T. Pereira, M. Small, Z. Liu, J. Kurths, Phys. Rev. Lett. 112, 114102 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    I. Sendina-Nadal, I. Leyva, A. Navas, J.A. Villacorta-Atienza, J.A. Almendral, Z. Wang, S. Boccaletti, Phys. Rev. E 91, 032811 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    F. Sorrentino, L.M. Pecora, A.M. Hagerstrom, T.E. Murphy, R. Roy, Sci. Adv. 2, 1501737 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    H. Bi, Y.Li, L. Zhou, S. Guan, Front. Phys. 12, 126801 (2017) CrossRefGoogle Scholar
  35. 35.
    C. Wang, Y. Zou, S. Guan, J. Kurths, New J. Phys. 19, 123036 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    V. Avalos-Gaytan, J.A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, S. Boccaletti, Phys. Rev. E 97, 042301 (2018) ADSCrossRefGoogle Scholar
  37. 37.
    L. Cao, C. Tian, Z. Wang, X. Zhang, Z. Liu, Phys. Rev. E 97, 022220 (2018) ADSCrossRefGoogle Scholar
  38. 38.
    N. Lotfi, F.A. Rodrigues, A.H. Darooneh, Chaos 28, 033102 (2018) ADSCrossRefGoogle Scholar
  39. 39.
    D. Yuan, J. Tian, F. Lin, D. Ma, J. Zhang, H. Cui, Y. Xiao, Front. Phys. 13, 130504 (2018) CrossRefGoogle Scholar
  40. 40.
    I. Leyva, A. Navas, I. Sendina-Nadal, S. Boccaletti, Discr. Continu. Dyn. Syst. Ser. B 23, 1931 (2018) Google Scholar
  41. 41.
    S.H. Yook, Y. Kim, Phys. Rev. E 97, 042317 (2018) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Hong, S.H. Strogatz, Phys. Rev. E 84, 046202 (2011) ADSCrossRefGoogle Scholar
  43. 43.
    H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, S. Guan, Phys. Rev. Lett. 117, 204101 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, S. Guan, Sci. Rep. 6, 36713 (2016) ADSCrossRefGoogle Scholar
  45. 45.
    W. Zhou, Y. Zou, J. Zhou, Z. Liu, S. Guan, Chaos 26, 123117 (2016) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    L. Zhu, Physica D 391, 111 (2019) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Telecommunications Engineering, Yulin Normal UniversityYulinP.R. China
  2. 2.Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data ProcessingYulinP.R. China
  3. 3.College of Physics and Electronic Information, Huaibei Normal UniversityHuaibeiP.R. China

Personalised recommendations