Advertisement

Asymmetric energy transfers in driven nonequilibrium systems and arrow of time

  • Mahendra K. VermaEmail author
Regular Article
  • 18 Downloads

Abstract

Fundamental interactions are either fully or nearly symmetric under time reversal. But macroscopic phenomena may have a definite arrow of time. From the perspectives of statistical physics, the direction of time is towards increasing entropy. In this paper, we provide another perspective on the arrow of time. In driven-dissipative nonequilibrium systems forced at large scale, the energy typically flows from large scales to dissipative scales. This generic and multiscale process breaks time reversal symmetry and principle of detailed balance, thus can yield an arrow of time. In this paper we propose that conversion of large-scale coherence to small-scales decoherence could be treated as a dissipation mechanism for generic physical systems. We illustrate the above processes using turbulence as an example. In the paper we also describe exceptions to the above scenario, mainly systems exhibiting no energy cascade or inverse energy cascade.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R.P. Feynman, The Character of Physical Law (Modern Library, New York, 1994) Google Scholar
  2. 2.
    J.L. Lebowitz, Rev. Mod. Phys. 71, S346 (1999) CrossRefGoogle Scholar
  3. 3.
    S. Carroll, From Eternity to Here (Oneworld Publications, 2011) Google Scholar
  4. 4.
    L.E. Reichl, in A Modern Course in Statistical Physics, 3rd edn. (Wiley, 2009) Google Scholar
  5. 5.
    Pathria, in Statistical Mechanics, 3rd edn. (Elsevier, Oxford, 2011) Google Scholar
  6. 6.
    F. Schwabl, Statistical Mechanics (Springer-Verlag, 2006) Google Scholar
  7. 7.
    L. Boltzmann, in The kinetic theory of gases: an anthology of classic papers with historical commentary (World Scientific, 2003), pp. 262–349 Google Scholar
  8. 8.
    R.L. Liboff, Kinetic Theory (Wiley, 1998) Google Scholar
  9. 9.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. (Perseus Books, Reading, MA, 2014) Google Scholar
  10. 10.
    J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement (Princeton University Press, 2014) Google Scholar
  11. 11.
    M.V. Berry, in Quantum Mechanics: scientific perspectives on divine action, edited by R.J. Russel, P. Clayton, K. Wegter-McNelly, J. Polkinghorne (Vatican Observatory CTNS publications, 2001), p. 41 Google Scholar
  12. 12.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995) Google Scholar
  13. 13.
    A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 32, 16 (1941) ADSGoogle Scholar
  14. 14.
    A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 30, 301 (1941) ADSGoogle Scholar
  15. 15.
    M. Lesieur, Turbulence in Fluids (Springer-Verlag, Dordrecht, 2008) Google Scholar
  16. 16.
    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000) Google Scholar
  17. 17.
    M.K. Verma, in Introduction to Mechanics, 2nd edn. (Universities Press, Hyderabad, 2016) Google Scholar
  18. 18.
    M. Claassen, H.C. Jiang, B. Moritz, T.P. Devereaux, Nat. Commun. 18, 1192 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Schwanecke, A. Krasavin, D.M. Bagnall, A. Potts, A.V. Zayats, N.I. Zheludev, Phys. Rev. Lett. 91, 247404 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Phys. Rev. Lett. 90, 107404 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004) Google Scholar
  22. 22.
    H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, G. Boffetta, PNAS 111, 7558 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    J. Jucha, H. Xu, A. Pumir, Phys. Rev. Lett. 113, 054501 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    M. Cencini, L. Biferale, G. Boffetta, M. De Pietro, Phys. Rev. Fluids 2, 104604 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    E. Piretto, S. Musacchio, F. de Lillo, G. Boffetta, Phys. Rev. E 94, 053116 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    L.D. Landau, E.M. Lifshitz, in Fluid Mechanics, Course of Theoretical Physics, 2nd edn. (Elsevier, Oxford, 1987) Google Scholar
  27. 27.
    G. Dar, M.K. Verma, V. Eswaran, Physica D 157, 207 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    M.K. Verma, Phys. Rep. 401, 229 (2004) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Y.H. Pao, Phys. Fluids 11, 1371 (1968) ADSCrossRefGoogle Scholar
  30. 30.
    M.K. Verma, A. Kumar, P. Kumar, S. Barman, A.G. Chatterjee, R. Samtaney, R. Stepanov, Fluid Dyn. 53, 728 (2018) CrossRefGoogle Scholar
  31. 31.
    M.K. Verma, A. Ayyer, O. Debliquy, S. Kumar, A.V. Chandra, Pramana - J. Phys. 65, 297 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Verma, Energy transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge University Press, Cambridge, 2019) Google Scholar
  33. 33.
    W.D. McComb, The physics of fluid turbulence (Clarendon Press, Oxford, 1990) Google Scholar
  34. 34.
    J.A. Domaradzki, R.S. Rogallo, Phys. Fluids A 2, 414 (1990) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhou, Phys. Fluids A 5, 1092 (1993) ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Sergio Chibbaro, Lamberto Rondoni, Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline (Springer, 2014) Google Scholar
  37. 37.
    D.L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge University Press, 1997) Google Scholar
  38. 38.
    F. Plunian, R. Stepanov, P. Frick, Phys. Rep. 523, 1 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    P.K. Yeung, K.R. Sreenivasan, J. Fluid Mech. 716, R14 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    B.I. Shraiman, E.D. Siggia, Nature 405, 639 (2000) ADSCrossRefGoogle Scholar
  41. 41.
    M.K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence (World Scientific, Singapore, 2018) Google Scholar
  42. 42.
    M.K. Verma, in New Perspectives and Challenges in Econophysics and Sociophysics, edited by F. Abergel, B. Chakrabarti, A. Chakraborti, N. Deo, K. Sharma (Springer, 2019) Google Scholar
  43. 43.
    M.L. Goldstein, D.A. Roberts, Annu. Rev. Astron. Astrophys. 33, 283 (1995) ADSCrossRefGoogle Scholar
  44. 44.
    Y.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff, Magnetic fields in astrophysics (Gordon and Breach, 1983) Google Scholar
  45. 45.
    J.C. McWilliams, Fundamentals of geophysical fluid dynamics (Cambridge University Press, Cambridge, 2006) Google Scholar
  46. 46.
    B.G. Elmegreen, J. Scalo, Annu. Rev. Astron. Astrophys. 42, 211 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    M.K. Verma, J. Geophys. Res. Space Phys. 101, 27543 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012) ADSCrossRefGoogle Scholar
  49. 49.
    M.K. Sharma, A. Kumar, M.K. Verma, S. Chakraborty, Phys. Fluids 30, 045103 (2018) ADSCrossRefGoogle Scholar
  50. 50.
    S.K. Nemirovskii, Phys. Rep. 524, 85 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    E. Fonda, K.R. Sreenivasan, D.P. Lathrop, PNAS 116, 1924 (2019) ADSCrossRefGoogle Scholar
  53. 53.
    N. Yokoi, A. Brandenburg, Phys. Rev. E 93, 033125 (2016) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations