Magnetic phase diagram of the Ising model with the long-range RKKY interaction

  • Lubomíra Regeciová
  • Pavol FarkašovskýEmail author
Regular Article


The standard Metropolis algorithm and the parallel tempering method are used to examine magnetization processes in the Ising model with the long-range RKKY interaction on the Shastry-Sutherland lattice. It is shown that the Ising model with RKKY interaction exhibits, depending on the value of the Fermi wave vector kF, the reach spectrum of magnetic solutions, which is manifested in the appearance of new magnetization plateaus on the magnetization curve. In particular, we have found the following set of individual magnetization plateaus with fractional magnetization mms = 1 ∕ 18, 1/9, 1/8, 1/5, 1/4, 1/3, 3/8, 5/12, 1/2, 3/5, 2/3, which for different values of kF form various sequences of plateaus, changing from very complex, appearing near the point kF = 2π ∕ 1.2, to very simple appearing away this point. Since the change of kF can be induced by doping (the substitution of rare-earth ion by other magnetic ion that introduces the additional electrons to the conduction band) the model is able to predict the complete sequences of magnetization plateaus, which could appear in the tetraboride solid solutions.

Graphical abstract


Solid State and Materials 


  1. 1.
    K. Siemensmeyer, E. Wulf, H.J. Mikeska, K. Flachbart, S. Gabani, S. Matas, P. Priputen, A. Efdokimova, N. Shitsevalova, Phys. Rev. Lett. 101, 177201 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    S. Mataš, K. Siemensmeyer, E. Wheeler, E. Wulf, R. Beyer, Th. Hermannsdörfer, O. Ignatchik, M. Uhlarz, K. Flachbart, S. Gabáni, P. Priputen, A. Efdokimova, N. Shitsevalova, J. Phys.: Conf. Ser. 200, 032041 (2010) Google Scholar
  3. 3.
    S. Michimura, A. Shigekawa, F. Iga, M. Sera, T. Takabatake, K. Ohoyama, Y. Okabe, Physica B 378, 596 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    S. Yoshii, T. Yamamoto, M. Hagiwara, S. Michimura, A. Shigekawa, F. Iga, T. Takabatake, K. Kindo, Phys. Rev. Lett. 101, 087202 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Shastry, B. Sutherland, Physica B + C 108, 1069 (1981) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Dublenych, Phys. Rev. Lett. 109, 167202 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Dublenych, Phys. Rev. E 88, 022111 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Dublenych, Phys. Rev. E 90, 052123 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Deviren, J. Magn. Magn. Mater. 393, 508 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    M.C. Chang, M.F. Yang, Phys. Rev. B 79, 104411 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    W.C. Huang, L. Huo, J.J. Feng, Z.B. Yan, X.T. Jia, X.S. Gao, M.H. Qin, J.-M. Liu, Europhys. Lett. 102, 37005 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    H. Čenčariková, P. Farkašovský, Phys. Status Solidi B 252, 333 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    P. Farkašovský, L. Regeciová, Eur. Phys. J. B 92, 33 (2019) ADSCrossRefGoogle Scholar
  14. 14.
    P. Farkašovský, H. Čenčariková, S. Mataš, Phys. Rev. B 82, 54410 (2010) CrossRefGoogle Scholar
  15. 15.
    J.J. Feng, L. Huo, W.C. Huang, Y. Wang, M.H. Qin, J.-M. Liu, Z. Ren, Europhys. Lett. 105, 17009 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    S. Mitra, J.G.S. Kang, J. Shin, J.Q. Ng, S.S. Sunku, T. Kong, P.C. Canfield, B.S. Shastry, P. Sengupta, Ch. Panagopoulos, Phys. Rev. B 99, 045119 (2019) ADSCrossRefGoogle Scholar
  17. 17.
    M.T. Béal-Monod, Phys. Rev. B 36, 88835 (1987) ADSGoogle Scholar
  18. 18.
    B.H. Hou, F.Y. Liu, B. Jiao, M. Yue, Acta Phys. Sin. 61, 077302 (2012) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Experimental Physics, Slovak Academy of SciencesKošiceSlovakia

Personalised recommendations