Advertisement

Constructing hyperchaotic attractors of conditional symmetry

  • Zhenyu Gu
  • Chunbiao LiEmail author
  • Herbert H. C. Iu
  • Fuhong Min
  • Yibo Zhao
Regular Article
  • 49 Downloads

Abstract

By applying the symmetry property of nonlinear function for obtaining new polarity balance, hyperchaotic systems of conditional symmetry are constructed, and coexisting hyperchaotic attractors of conditional symmetry originated from 1-D and 2-D offset boosting are captured accordingly. More interestingly, a symmetric hyperchaotic system is proven to host conditional symmetry, and consequently output coexisting symmetric pair of attractors and their duplication of conditional symmetry. Consequently, two independent processes of attractor merging are observed, which have not been previously reported. Furthermore, the property of offset boosting is discussed for the newly constructed hyperchaotic systems. Circuit implementation based on the develop kit of STM32 is developed, it demonstrates those coexisting attractors are in good agreement with the theoretical analysis and numerical simulations.

Graphical abstract

Keywords

Solid State and Materials 

Notes

Author contribution statement

Zhenyu Gu designed hyperchaotic system and explored multistability with circuit implementation. Chunbiao Li launched this project aiming to find hyperchaotic attractors of condtiontional symmetry and proved the results theoretically. Herbert H.C. Iu and Fuhong Min got involved to find different regimes of multistability. Yibo Zhao was involved partially in circuit design and implementation.

References

  1. 1.
    O.E. Rössler, Phys. Lett. A 71, 155 (1979) ADSMathSciNetGoogle Scholar
  2. 2.
    Q. Jia, Phys. Lett. A 366, 217 (2007) ADSGoogle Scholar
  3. 3.
    C. Cao, K. Sun, W. Liu, Signal Process. 143, 122 (2018) Google Scholar
  4. 4.
    K.P. Harikrishnan, R. Misra, G. Ambika, Eur. Phys. J. B 86, 394 (2013) ADSGoogle Scholar
  5. 5.
    P.C. Rech, Eur. Phys. J. B 90, 251 (2017) ADSGoogle Scholar
  6. 6.
    Q. Lai, A. Akgul, X. Zhao, H. Pei, Int. J. Bifurc. Chaos 27, 1720142 (2017) Google Scholar
  7. 7.
    S. Pang, Y. Liu, C. Zhu, Comput. Eng. Appl. 49, 235 (2013) Google Scholar
  8. 8.
    G. Wang, Y. Zhen, J. Liu, Acta Phys. Sin. 56, 3113 (2007) Google Scholar
  9. 9.
    R. Barboza, Int. J. Bifurc. Chaos 17, 4285 (2007) MathSciNetGoogle Scholar
  10. 10.
    Y. Li, G. Chen, W.K.S. Tang, IEEE Trans. Circuits Syst. II 52, 204 (2005) Google Scholar
  11. 11.
    C. Shen, S. Yu, J. Lü, G. Chen, IEEE Trans. Circuits Syst. I 61, 854 (2014) Google Scholar
  12. 12.
    D. Cafagna, G. Grassi, Int. J. Bifurc. Chaos 13, 2889 (2003) Google Scholar
  13. 13.
    Z. Wang, S. Cang, E.O. Ochola, Y. Sun, Nonlinear Dyn. 69, 531 (2012) Google Scholar
  14. 14.
    C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 1450034 (2014) Google Scholar
  15. 15.
    V.T. Pham, F. Rahma, M. Frasca, L. Fortuna, Int. J. Bifurc. Chaos 24, 1450087 (2014) Google Scholar
  16. 16.
    V.T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, S.T. Kingni, Optik 127, 3259 (2016) ADSGoogle Scholar
  17. 17.
    Z. Wei, R. Wang, A. Liu, Math. Comput. Simul. 100, 13 (2014) Google Scholar
  18. 18.
    X. Wang, G. Chen, Nonlinear Dyn. 71, 429 (2013) Google Scholar
  19. 19.
    J. Ma, Z. Chen, Z. Wang, Q. Zhang, Nonlinear Dyn. 81, 1275 (2015) Google Scholar
  20. 20.
    C. Li, J.C. Sprott, W. Thio, J. Exp. Theor. Phys. 118, 494 (2014) ADSGoogle Scholar
  21. 21.
    G.A. Leonov, V.I. Vagaitsev, N.V. Kuznetsov, Physica D 241, 1482 (2012) ADSMathSciNetGoogle Scholar
  22. 22.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013) Google Scholar
  23. 23.
    H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018) ADSMathSciNetGoogle Scholar
  24. 24.
    H. Bao, T. Jiang, K. Chu, M. Chen, Q. Xu, B. Bao, Complexity 2018, 5935637 (2018) Google Scholar
  25. 25.
    L. Zhou, C. Wang, X. Zhang, W. Yao, Int. J. Bifurc. Chaos 28, 1850050 (2018) Google Scholar
  26. 26.
    Q. Zhao, C. Wang, X. Zhang, Chaos 29, 013141 (2019) ADSMathSciNetGoogle Scholar
  27. 27.
    B. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fractals 94, 102 (2017) ADSMathSciNetGoogle Scholar
  28. 28.
    F. Yuan, G. Wang, X. Wang, Chaos 26, 507 (2016) Google Scholar
  29. 29.
    C. Li, J.C. Sprott, T. Kapitaniak, T. Lu, Chaos Solitons Fractals 109, 76 (2018) ADSMathSciNetGoogle Scholar
  30. 30.
    C. Li, A. Akgul, J.C. Sprott, H.H. Lu, W. Thio, Int. J. Circuit Theory Appl. 46, 2434 (2018) Google Scholar
  31. 31.
    C. Li, J.C. Sprott, H. Xing, Nonlinear Dyn. 87, 1351 (2017) Google Scholar
  32. 32.
    C. Li, J.C. Sprott, W. Hu, Y. Xu, Int. J. Bifurc. Chaos 27, 1750160 (2017) Google Scholar
  33. 33.
    C. Li, Y. Xu, G. Chen, Y. Liu, J. Zheng, Nonlinear Dyn. 95, 1245 (2018) Google Scholar
  34. 34.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963) ADSGoogle Scholar
  35. 35.
    J.C. Sprott, Int. J. Bifurc. Chaos 24, 388 (2014) MathSciNetGoogle Scholar
  36. 36.
    C. Li, W. Hu, J.C. Sprott, X. Wang, Eur. Phys. J. Special Topics 224, 1493 (2015) ADSGoogle Scholar
  37. 37.
    G.M. Chechin, D.S. Ryabov, Phys. Rev. E 69, 036202 (2004) ADSMathSciNetGoogle Scholar
  38. 38.
    M. Buncha, S. Banlue, Phys. Lett. A 373, 4038 (2009) MathSciNetGoogle Scholar
  39. 39.
    B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, M. Chen, Nonlinear Dyn. 89, 1157 (2017) Google Scholar
  40. 40.
    Z. Wei, I. Moroz, J.C. Sprott, A. Akgul, W. Zhang, Chaos 27, 033101 (2017) ADSMathSciNetGoogle Scholar
  41. 41.
    J.Y. Hsieh, C.C. Hwang, A. Wang, W. Li, Int. J. Control 72, 882 (1999) Google Scholar
  42. 42.
    X. Wang, X. Wu, Chaos 16, 033121 (2006) ADSGoogle Scholar
  43. 43.
    A. Khan, M.A. Bhat, Int. J. Dyn. Control 5, 1211 (2017) MathSciNetGoogle Scholar
  44. 44.
    C. Li, J.C. Sprott, Optik 127, 10389 (2016) ADSGoogle Scholar
  45. 45.
    C. Li, J.C. Sprott, A. Akgul, H.H. Lu, Y. Zhao, Chaos 27, 083101 (2017) ADSMathSciNetGoogle Scholar
  46. 46.
    C. Li, X. Wang, G. Chen, Nonlinear Dyn. 90, 1335 (2017) Google Scholar
  47. 47.
    G.A. Gottwald, L. Melbourne, SIAM J. Appl. Dyn. Syst. 8, 129 (2009) ADSMathSciNetGoogle Scholar
  48. 48.
    K. Sun, X. Liu, C. Zhu, Chin. Phys. B 19, 110510 (2010) ADSGoogle Scholar
  49. 49.
    L. Zhou, C. Wang, L. Zhou, Nonlinear Dyn. 85, 2653 (2016) Google Scholar
  50. 50.
    L. Zhou, C. Wang, L. Zhou, Int. J. Circuit Theory Appl. 46, 84 (2018) Google Scholar
  51. 51.
    C. Wang, X. Liu, H. Xia, Chaos 27, 033114 (2017) ADSGoogle Scholar
  52. 52.
    L. Zhou, C. Wang, L. Zhou, Int. J. Bifurc. Chaos 27, 1750027 (2017) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhenyu Gu
    • 1
    • 2
  • Chunbiao Li
    • 1
    • 2
    Email author
  • Herbert H. C. Iu
    • 3
  • Fuhong Min
    • 4
  • Yibo Zhao
    • 1
    • 2
  1. 1.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & TechnologyNanjingP.R. China
  2. 2.Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & TechnologyNanjing P.R. China
  3. 3.School of Electrical, Electronic, and Computing Engineering, The University of Western AustralianCrawleyAustralia
  4. 4.School of Electrical and Automation Engineering, Nanjing Normal UniversityNanjingP.R. China

Personalised recommendations