Advertisement

Stochastic thermodynamics of holonomic systems

  • Stefano GiordanoEmail author
Regular Article
  • 41 Downloads

Abstract

Stochastic thermodynamics is a recently introduced approach to deals with small systems in contact with one or more thermal baths. This theory has been applied to systems of unconstrained particles to investigate the role of the thermodynamics principles in micro- and nano-scale systems and to demonstrate some important fluctuations theorems. Nowadays, the manipulations of small systems with advanced nanotechnologies provided the experimental evidence of most of results based on stochastic thermodynamics. Here, this approach is generalized to consider arbitrary holonomic systems subjected to arbitrary external forces and described by Lagrange and Hamilton equations of motion. In both the underdamped and overdamped cases, the principles of thermodynamics are obtained in the out-of-equilibrium regime by giving microscopic interpretations of heat, energy and entropy. To do this, the Klein-Kramers (for the underdamped case) and Smoluchowski (for the overdamped case) equations are used in covariant form to be consistent with the Brownian motion on smooth manifolds. Moreover, explicit expressions for the entropy production have been obtained and can be applied to the non-equilibrium thermodynamics of holonomic systems.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Brown, Philos. Mag. 4, 161 (1828) CrossRefGoogle Scholar
  2. 2.
    R. Brown, Philos. Mag. 6, 161 (1829) CrossRefGoogle Scholar
  3. 3.
    A. Fick, Ann. Phys. (Leipzig) 19, 371 (1855) Google Scholar
  4. 4.
    A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905) CrossRefADSGoogle Scholar
  5. 5.
    A. Einstein, Ann. Phys. (Leipzig) 19, 371 (1906) CrossRefADSGoogle Scholar
  6. 6.
    M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906) CrossRefADSGoogle Scholar
  7. 7.
    P. Langevin, C. R. Acad. Sci. (France) 146, 530 (1908) Google Scholar
  8. 8.
    J.B. Perrin, C. R. Acad. Sci. (France) 158, 1168 (1914) Google Scholar
  9. 9.
    J.B. Perrin, Discontinuous Structure of Matter, Nobel Lecture, 1926 Google Scholar
  10. 10.
    A.D. Fokker, Ann. Phys. 348, 810 (1914) CrossRefGoogle Scholar
  11. 11.
    M. Planck, Sitzungsber. Preuss. Akad. Wiss. 324, 142 (1917) Google Scholar
  12. 12.
    A. Kolmogoroff, Math. Ann. 104, 415 (1931) CrossRefMathSciNetGoogle Scholar
  13. 13.
    O. Klein, Arkiv für Matematik, Astronomi och Fysik 16, 1 (1921) Google Scholar
  14. 14.
    H.A. Kramers, Physica 7, 284 (1940) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943) CrossRefADSGoogle Scholar
  16. 16.
    W. Coffey, Adv. Chem. Phys. 63, 69 (1985) Google Scholar
  17. 17.
    N.G. van Kampen,Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1981) Google Scholar
  18. 18.
    H. Risken,The Fokker-Planck equation (Springer Verlag, Berlin, 1989) Google Scholar
  19. 19.
    W.T. Coffey, Yu.P. Kalmykov, J.P. Waldron,The Langevin equation (World Scientific, Singapore, 2004) Google Scholar
  20. 20.
    K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997) CrossRefADSGoogle Scholar
  21. 21.
    K. Sekimoto,Stochastic Energetics (Springer, Berlin, 2010) Google Scholar
  22. 22.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005) CrossRefADSGoogle Scholar
  23. 23.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008) CrossRefADSGoogle Scholar
  24. 24.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) CrossRefADSGoogle Scholar
  25. 25.
    J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    M. Esposito, C. Van den Broeck, Phys. Rev. E 82, 011143 (2010) CrossRefADSGoogle Scholar
  27. 27.
    C. Van den Broeck, M. Esposito, Phys. Rev. E 82, 011144 (2010) CrossRefADSGoogle Scholar
  28. 28.
    T. Tomé, M.J. de Oliveira, Phys. Rev. E 82, 021120 (2010) CrossRefADSGoogle Scholar
  29. 29.
    T. Tomé, M.J. de Oliveira, Phys. Rev. Lett. 108, 020601 (2012) CrossRefADSGoogle Scholar
  30. 30.
    T. Tomé, M.J. de Oliveira, Phys. Rev. E 91, 042140 (2015) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) CrossRefADSGoogle Scholar
  32. 32.
    C. Jarzynski, Phys. Rev. E 56, 5018 (1997) CrossRefADSGoogle Scholar
  33. 33.
    G. Crooks, Phys. Rev. E 60, 2721 (1999) CrossRefADSGoogle Scholar
  34. 34.
    D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Nature 437, 231 (2005) CrossRefADSGoogle Scholar
  35. 35.
    C. Jarzynski, C. R. Phys. 8, 495 (2007) CrossRefADSGoogle Scholar
  36. 36.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009) CrossRefADSGoogle Scholar
  37. 37.
    P. Caldirola, L.A. Lugiato, Physica A 116, 248 (1982) CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    B. Bianco, E. Moggia, S. Giordano, W. Rocchia, A. Chiabrera, Il Nuovo Cimento 116, 155 (2001) Google Scholar
  40. 40.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007) CrossRefADSGoogle Scholar
  41. 41.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009) CrossRefADSGoogle Scholar
  42. 42.
    G. Watanabe, P. Venkatesh, P. Talkner, M. Campisi, P. Hänggi, Phys. Rev. E 89, 032114 (2014) CrossRefADSGoogle Scholar
  43. 43.
    S.M. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996) CrossRefADSGoogle Scholar
  44. 44.
    J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995) CrossRefADSGoogle Scholar
  45. 45.
    F. Ritort, J. Phys.: Condens. Matter 18, R531 (2006) ADSGoogle Scholar
  46. 46.
    F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, J. Chem. Phys. 136, 154906 (2012) CrossRefADSGoogle Scholar
  47. 47.
    F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, J. Chem. Phys. 137, 244907 (2012) CrossRefADSGoogle Scholar
  48. 48.
    M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764 (1998) CrossRefADSGoogle Scholar
  49. 49.
    F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Phys. Rev. E 87, 032705 (2013) CrossRefADSGoogle Scholar
  50. 50.
    M. Benedito, S. Giordano, J. Chem. Phys. 149, 054901 (2018) CrossRefADSGoogle Scholar
  51. 51.
    M. Benedito, S. Giordano, Phys. Rev. E 98, 052146 (2018) CrossRefADSGoogle Scholar
  52. 52.
    M. Benedito, F. Manca, S. Giordano, Inventions 4, 19 (2019) CrossRefGoogle Scholar
  53. 53.
    R.G. Winkler, Soft Matter 6, 6183 (2010) CrossRefADSGoogle Scholar
  54. 54.
    F. Manca, S. Giordano, P.L. Palla, F. Cleri, Physica A 395, 154 (2014) CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    K. Svoboda, C. Schmidt, B. Schnapp, S. Block, Nature 365, 721 (1993) CrossRefADSGoogle Scholar
  56. 56.
    M. Magnasco, Phys. Rev. Lett. 71, 1477 (1993) CrossRefADSGoogle Scholar
  57. 57.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009) CrossRefADSGoogle Scholar
  58. 58.
    R. Perez-Carrasco, J.M. Sancho, Phys. Rev. E 84, 041915 (2011) CrossRefADSGoogle Scholar
  59. 59.
    L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935) Google Scholar
  60. 60.
    T.L. Gilbert, Phys. Rev. 100, 1243 (1955) (abstract only) Google Scholar
  61. 61.
    T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004) CrossRefADSGoogle Scholar
  62. 62.
    W.F. Brown, J. Appl. Phys. 30, S130 (1959) CrossRefADSGoogle Scholar
  63. 63.
    W.F. Brown, IEEE Trans. Magn. 15, 1196 (1979) CrossRefADSGoogle Scholar
  64. 64.
    G. Bertotti, I. Mayergoyz, C. Serpico,Nonlinear Magnetization Dynamic in Nanosystems (Elsevier, Oxford, 2000) Google Scholar
  65. 65.
    D.R. Fredkin, Physica B 306, 26 (2001) CrossRefADSGoogle Scholar
  66. 66.
    S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Phys. Rev. B 75, 184432 (2007) CrossRefADSGoogle Scholar
  67. 67.
    P.M. Déjardin, D.S.F. Crothers, W.T. Coffey, D.J. McCarthy, Phys. Rev. E 63, 021102 (2001) CrossRefADSGoogle Scholar
  68. 68.
    S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Eur. Phys. J. B 86, 249 (2013) CrossRefADSGoogle Scholar
  69. 69.
    S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, J. Phys. D: Appl. Phys. 46, 325002 (2013) CrossRefGoogle Scholar
  70. 70.
    N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, P. Pernod, inNanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, edited by S. Bandyopadhyay, J. Atulasimha (John Wiley & Sons Ltd, Chichester, 2016), Chap. 8 Google Scholar
  71. 71.
    R. Pan, T.M. Hoang, Z. Fei, T. Qiu, J. Ahn, T. Li, H.T. Quan, Phys. Rev. E 98, 052105 (2018) CrossRefGoogle Scholar
  72. 72.
    Y. Murashita, M. Esposito, Phys. Rev. E 94, 062148 (2016) CrossRefADSGoogle Scholar
  73. 73.
    F. Manca, P.-M. Déjardin, S. Giordano, Ann. Phys. (Berlin) 528, 381 (2016) CrossRefADSGoogle Scholar
  74. 74.
    M. Fixman, Proc. Natl. Acad. Sci. USA 71, 3050 (1974) CrossRefADSGoogle Scholar
  75. 75.
    G. Ciccotti, M. Ferrario, inClassical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998), Chap. 4 Google Scholar
  76. 76.
    G. Ciccotti, M. Ferrario, Computation 6, 11 (2018) CrossRefGoogle Scholar
  77. 77.
    F. Gantmacher,Lectures in Analytical Mechanics (MIR Publisher, Moscow, 1975) Google Scholar
  78. 78.
    K. Itô, Nagoya Math. J. 1, 35 (1950) CrossRefMathSciNetGoogle Scholar
  79. 79.
    R.L. Stratonovich, SIAM J. Control Optim. 4, 362 (1966) CrossRefGoogle Scholar
  80. 80.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982) CrossRefADSMathSciNetGoogle Scholar
  81. 81.
    Yu.L. Klimontovich,Statistical Theory of Open Systems (Kluver Academic, Dordrecht, 1995) Google Scholar
  82. 82.
    I.M. Sokolov, Chem. Phys. 375, 359 (2010) CrossRefGoogle Scholar
  83. 83.
    S.I. Denisov, A.N. Vitrenko, W. Horsthemke, Phys. Rev. E 68, 046132 (2003) CrossRefADSGoogle Scholar
  84. 84.
    V. Méndez, S.I. Denisov, D. Campos, W. Horsthemke, Phys. Rev. E 90, 012116 (2014) CrossRefADSGoogle Scholar
  85. 85.
    J.W. Gibbs,Elementary principles in statistical mechanics (Charles Scribner’s Sons, New York, 1902) Google Scholar
  86. 86.
    H. White, Bull. Math. Biophys. 27, 135 (1965) CrossRefGoogle Scholar
  87. 87.
    V. Hnizdo, M.K. Gilson, Entropy 12, 578 (2010) CrossRefADSMathSciNetGoogle Scholar
  88. 88.
    M. Polettini, J. Stat. Mech.: Theory Exp. 2013, P07005 (2013) CrossRefMathSciNetGoogle Scholar
  89. 89.
    M.P. do CarmoDifferential Geometry of Curves and Surfaces (Prentice-Hall, New York, 1976) Google Scholar
  90. 90.
    T. Levi-Civita,The absolute differential calculus (Blackie & Son Limited, London, 1946) Google Scholar
  91. 91.
    P. Castro-Villarreal, J. Stat. Mech.: Theory Exp. 2010, P08006 (2010) CrossRefGoogle Scholar
  92. 92.
    P. Castro-Villarreal, J. Stat. Mech.: Theory Exp. 2014, P05017 (2014) CrossRefMathSciNetGoogle Scholar
  93. 93.
    P. Castro-Villarreal, A. Villada-Balbuena, J.M. Méndez-Alcaraz, R. Castañeda-Priego, S. Estrada-Jiménez, J. Chem. Phys. 140, 214115 (2014) CrossRefADSGoogle Scholar
  94. 94.
    H. Kleinert, S.V. Shabanov, J. Phys. A: Math. Gen. 31, 7005 (1998) CrossRefADSGoogle Scholar
  95. 95.
    Z. Schuss,Theory and Applications of Stochastic Differential Equations (John Wiley & Sons, New York, 1980) Google Scholar
  96. 96.
    Z. Schuss,Theory and Applications of Stochastic Processes (Springer, New York, 2010) Google Scholar
  97. 97.
    P. Hsu, Contemp. Math. AMS 73, 95 (1988) CrossRefGoogle Scholar
  98. 98.
    K. Itô, inProc. Internat. Congr. Math. (Stockholm, Inst. Mittag-Leffler, Djursholm, 1962), p. 536 Google Scholar
  99. 99.
    W.S. Kendall, Acta Appl. Math. 9, 29 (1987) CrossRefMathSciNetGoogle Scholar
  100. 100.
    D.W. Stroock, Bull. Amer. Math. Soc. 33, 135 (1996) CrossRefMathSciNetGoogle Scholar
  101. 101.
    R. Graham, Z. Phys. B 26, 397 (1977) CrossRefADSMathSciNetGoogle Scholar
  102. 102.
    H. Grabert, M.S. Green, Phys. Rev. A 19, 1747 (1979) CrossRefADSMathSciNetGoogle Scholar
  103. 103.
    H. Grabert, R. Graham, M.S. Green, Phys. Rev. A 21, 2136 (1980) CrossRefADSMathSciNetGoogle Scholar
  104. 104.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930) CrossRefADSGoogle Scholar
  105. 105.
    M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945) CrossRefADSGoogle Scholar
  106. 106.
    N.G. van Kampen, J. Stat. Phys. 44, 1 (1986) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electronics, Microelectronics and Nanotechnology – UMR 8520, Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, LIA LICS/LEMACLilleFrance

Personalised recommendations