Advertisement

Devlin-like approach to a spin-1 transverse XY model with biquadratic exchange and single-ion anisotropy

  • Ileana RabuffoEmail author
  • Luigi De Cesare
  • Alvaro Caramico D’Auria
  • Maria T. Mercaldo
Regular Article
  • 18 Downloads

Abstract

The effect of the biquadratic exchange interaction on the phase diagram of a d-dimensional spin-1 transverse XY model with easy-axis single-ion anisotropy is studied by employing the Devlin-like two-time Green functions framework. The chain of equations of motion is closed adopting the random phase approximation for the exchange higher order Green functions and treating exactly the crystal-field anisotropy terms. For short-range interactions and d > 2, analytical estimates and numerical calculations predict a reentrant behavior of the critical lines close to the magnetic-field-induced quantum critical point for appropriate values of the single-ion anisotropy parameter and suitable combinations of the bilinear and biquadratic exchange couplings. Remarkably, increasing the biquadratic exchange reduces or destroies the reentrant character of the quantum critical lines, in qualitative agreement with the findings of the Anderson-Callen-like strategy. In our formalism, the easy-plane anisotropy case can be studied similarly but the phase diagram and the quantum critical scenario do not present any reentrant phenomena.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    V.S. Zapf, D. Zocco, B.R. Hansen, N. Harrison, C.D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Zvyagin, J. Wosnitza, C.D. Batista, M. Tsukamoto, N. Kawashima, V.S. Zapf, M. Jaime, N.F. Oliveira Jr., A. Paduan-Filho, Phys. Rev. Lett. 98, 047205 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    F. Weikert, R. Kuchler et al., Phys. Rev. B 85, 184408 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Kalita, I.M. Ivanova, V.M. Loktev, Theor. Math. Phys. 173, 1620 (2012) CrossRefGoogle Scholar
  5. 5.
    Z. Zhang, K.K. Wierschem, I. Yap, Y. Kato, C.D. Batista, P. Sengupta, Phys. Rev. B 87, 174405 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    A.S.T. Pires, Physica A 437, 198 (2015) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L.S. Lima, Physica C 547, 22 (2018) and references therein ADSCrossRefGoogle Scholar
  8. 8.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011) Google Scholar
  9. 9.
    M.T. Mercaldo, A. Caramico D’Auria, L. De Cesare, I. Rabuffo, Phys. Rev. B 77, 184424 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico D’Auria, Phys. Rev. B 75, 014105 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    I. Rabuffo, M.T. Mercaldo, L. De Cesare, A. Caramico D’Auria, Phys. Lett. A 356, 174 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    H.H. Chen, P. Levy, Phys. Rev. B 7, 4284 (1973) ADSCrossRefGoogle Scholar
  13. 13.
    R. Micnas, J. Phys. C: Solid State Phys. 9, 3307 (1976) ADSCrossRefGoogle Scholar
  14. 14.
    G.S. Chadda, S.M. Zheng, J. Magn. Magn. Mater. 152, 152 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    G.S. Chaddha, A. Sharma, J. Magn. Magn. Mater. 191, 373 (1999) and references therein ADSCrossRefGoogle Scholar
  16. 16.
    I. Rabuffo, L. De Cesare, A. Caramico D’Auria, M.T. Mercaldo, J. Magn. Magn. Mat. 472, 40 (2019) and references therein ADSCrossRefGoogle Scholar
  17. 17.
    D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp 3, 320 (1960)] CrossRefGoogle Scholar
  18. 18.
    S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967) Google Scholar
  19. 19.
    W. Nolting, A. Ramakanth, Quantum theory of Magnetism (Springer-Verlag, Berlin, Heidelberg, 2009) Google Scholar
  20. 20.
    L.S. Campana, L. De Cesare, U. Esposito, M.T. Mercaldo, I Rabuffo, Phys. Rev. B 82, 024409 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    H.T. Diep, Phys. Rev. B 91, 014436 (2015) and references therein ADSCrossRefGoogle Scholar
  22. 22.
    S. El Hog, H.T. Diep, J. Magn. Magn. Mater. 400, 276 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    H.T. Diep, J. Sci.: Adv. Mater. Dev. 1, 31 (2016) and references therein Google Scholar
  24. 24.
    T. Egami, B.V. Fine, D. Parshall, A. Subedi, D.J. Singh, Adv. Condens. Matter Phys. 2010, 164916 (2010) CrossRefGoogle Scholar
  25. 25.
    P.J. Hirschfeld, M.M. Korsjunov, I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    A.L. Wysocki, K.D. Belashchenko, V.P. Antropov, Nat. Phys. 7, 485 (2011) and references therein CrossRefGoogle Scholar
  27. 27.
    A.L. Wysocki, K.D. Belashchenko, L. Ke, M. van Schilfgaarde, V.P. Antropov, J. Phys.: Conf. Ser. 449, 012024 (2013) Google Scholar
  28. 28.
    E.C. Andrade, M. Brando, C. Geibel, M. Vojta, Phys. Rev. B 90, 075318 (2014) Google Scholar
  29. 29.
    M. Brando, D. Belitz, F.M. Grosche, T.R. Kirkpatrik, Rev. Mod. Phys. 88, 025006 (2016) and references therein ADSCrossRefGoogle Scholar
  30. 30.
    B.A. Ivanov, A.K. Kolezhuk, Low Temp. Phys. 21, 760 (1995) ADSGoogle Scholar
  31. 31.
    Y.A. Fridman, O.A. Kosmachev, F.N. Klevets, Low Temp. Phys. 32, 1 (2006) CrossRefGoogle Scholar
  32. 32.
    M. Cieplak, Phys. Rev. B 15, 5310 (1977) ADSCrossRefGoogle Scholar
  33. 33.
    W. Figueiredo, S.R. Salinas, Physica B 124, 259 (1984) CrossRefGoogle Scholar
  34. 34.
    M. Yu-Qiang, W. Figueiredo, Phys. Rev. B 55, 5604 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen, Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information (Cambridge University Press, 2015) and references therein Google Scholar
  36. 36.
    F.B. Anderson, H. Callen, Phys. Rev. A 136, 1068 (1964) ADSCrossRefGoogle Scholar
  37. 37.
    F. Devlin, Phys. Rev. B 1, 136 (1971) ADSCrossRefGoogle Scholar
  38. 38.
    M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D’Auria, J. Phys.: Conf. Ser. 529, 012019 (2014) Google Scholar
  39. 39.
    I. Rabuffo, L. De Cesare, A. Caramico D’Auria, M.T. Mercaldo, Physica B 536, 422 (2018) ADSCrossRefGoogle Scholar
  40. 40.
    M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D’Auria, J. Magn. Magn. Mater. 364, 85 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    I. Rabuffo, A. Caramico D’Auria, L. De Cesare, M.T. Mercaldo, J. Magn. Magn. Mater. 382, 237 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    G.S. Chaddha, G.S. Kalsi, Phys. Stat. Sol. (b) 151, 283 (1989) ADSCrossRefGoogle Scholar
  43. 43.
    P. Fröbich, P.J. Kunz, Phys. Rep. 432, 223 (2006) and references therein ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Tanaka, Y. Kondo, Prog. Theor. Phys. 48, 1815 (1972) ADSCrossRefGoogle Scholar
  45. 45.
    C.T. Kelley, Iterative methods and non-linear equations (Society for Industrial and Applied Mathematics, Phyladelfia, 1995) Google Scholar
  46. 46.
    H.B. Callen, Phys. Rev. 130, 890 (1963) ADSCrossRefGoogle Scholar
  47. 47.
    V. Kumar, K.C. Sharma, Prog. Theor. Phys. 56, 801 (1976) ADSCrossRefGoogle Scholar
  48. 48.
    M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D’Auria, J. Magn. Magn. Mater. 439, 333 (2017) ADSCrossRefGoogle Scholar
  49. 49.
    M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D’Auria, J. Magn. Magn. Mater. 403, 68 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ileana Rabuffo
    • 1
    Email author
  • Luigi De Cesare
    • 1
  • Alvaro Caramico D’Auria
    • 2
  • Maria T. Mercaldo
    • 1
  1. 1.Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno and CNISM, Unità di SalernoFisciano (Salerno)Italy
  2. 2.Dipartimento di Fisica, Università di Napoli Federico IINapoliItaly

Personalised recommendations