Advertisement

Topological self-organization of strongly interacting particles

  • Ioannis KleftogiannisEmail author
  • Ilias Amanatidis
Regular Article

Abstract

We investigate the self-organization of strongly interacting particles confined in 1D and 2D. We consider hardcore bosons in spinless Hubbard lattice models with short-range interactions. We show that many-body states with topological features emerge at different energy bands separated by large gaps. The topology manifests in the way the particles organize in real space to form states with different energy. Each of these states contains topological defects/condensations whose Euler characteristic can be used as a topological number to categorize states belonging to the same energy band. We provide analytical formulas for this topological number and the full energy spectrum of the system for both sparsely and densely filled systems. Furthermore, we analyze the connection with the Gauss-Bonnet theorem of differential geometry, by using the curvature generated in real space by the particle structures. Our result is a demonstration of how states with topological characteristics, emerge in strongly interacting many-body systems following simple underlying rules, without considering the spin, long-range microscopic interactions, or external fields.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.D. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937) Google Scholar
  2. 2.
    V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1971) ADSMathSciNetGoogle Scholar
  3. 3.
    V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972) ADSGoogle Scholar
  4. 4.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. Lett. 40, 783 (1978) ADSCrossRefGoogle Scholar
  7. 7.
    G. Agnolet, D.F. McQueeney, J.D. Reppy, Phys. Rev. B 39, 8934 (1989) ADSCrossRefGoogle Scholar
  8. 8.
    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    X.-G. Wen, Phys. Rev. B 44, 2664 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    X. Chen, Z.-C. Gu, X.-G. Wen, Phys. Rev. B 82, 155138 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    M. Levin, X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    X. Chen, Z.-C. Gu, X.-G. Wen, Phys. Rev. B 83, 035107 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    L. Mathey, K.J. Günter, J. Dalibard, A. Polkovnikov, Phys. Rev. A 95, 053630 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    R.T. Scalettar, E.Y. Loh, J.E. Gubernatis, A. Moreo, S.R. White, D.J. Scalapino, R.L. Sugar, E. Dagotto, Phys. Rev. Lett. 62, 1407 (1989) ADSCrossRefGoogle Scholar
  15. 15.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982) ADSCrossRefGoogle Scholar
  16. 16.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) ADSCrossRefGoogle Scholar
  17. 17.
    B. Yoshida, Phys. Rev. B 88, 125122 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    S.V. Isakov, M.B. Hasting, R.G. Melko, Nat. Phys. 7, 772 (2011) CrossRefGoogle Scholar
  19. 19.
    L. Savary, L. Balents, Rep. Prog. Phys. 80, 016502 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    A. Hamma, R. Ionicioiu, P. Zanardi, Phys. Rev. A 71, 022315 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    I.H. Kim, Phys. Rev. Lett. 111, 080503 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    R. Islam, R. Ma, P.M. Preiss, M.E. Tai, A. Lukin, M. Rispoli, M. Greiner, Nature 528, 77 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Li, F.D.M. Haldane, Phys. Rev. Lett. 101, 010504 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    V. Alba, M. Haque, A.M. Luchli, Phys. Rev. Lett. 110, 260403 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    P. Calabrese, A. Lefevre, Phys. Rev. A 78, 032329 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    H.M. Guo, Phys. Rev. A 86, 055604 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Y.-F. Wang, Z.-C. Gu, C.-D. Gong, D.N. Sheng, Phys. Rev. Lett. 107, 146803 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    N.G. Zhang, C.L. Henley, Phys. Rev. B 68, 014506 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    C.N. Varney, K. Sun, M. Rigol, V. Galitski, Phys. Rev. B 82, 115125 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    R.N. Goldman, J.C. Budich, P. Zoller, Nat. Phys. 12, 639 (2016) CrossRefGoogle Scholar
  35. 35.
    I. Bloch, J. Dalibard, S. Nascimbne, Nat. Phys. 8, 267 (2012) CrossRefGoogle Scholar
  36. 36.
    B. Chen, G. Chen, Graph. Combinator. 24, 159 (2008) CrossRefGoogle Scholar
  37. 37.
    O. Knill, Elem. Math. 67, 1 (2012) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    O. Knill, https://arXiv:1111.5395 [math.DG] (2011)

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Division, National Center for Theoretical SciencesHsinchuTaiwan
  2. 2.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations