Advertisement

The structural transition under densification and the relationship between structure and density of silica glass

  • N. V. Hong
  • L. T. VinhEmail author
  • P. K. Hung
  • M. V. Dung
  • N. V. Yen
Regular Article
  • 29 Downloads

Abstract

The structure of silica glass (SiO2) at different densities and at temperatures of 500 K is investigated by molecular dynamics simulation. Results reveal that at density of 3.317 g/cm3, the structure of silica glass mainly comprises two phases: SiO4- and SiO5-phases. With the increase of density, the structure tends to transform from SiO4-phase into SiO6-phase. At density of 3.582 g/cm3, the structure comprises three phases: SiO4- , SiO5-, and SiO6-phases, however, the SiO5- phase is dominant. At higher density (3.994 g/cm3), the structure mainly consists of two main phases: SiO5- and SiO6-phases. In the SiO4-phase, the SiO4 units mainly link to each other via corner-sharing bonds. In the SiO5-phase, the SiO5 units link to each other via both corner- and edge-sharing bonds. For SiO6-phase, the SiO6 units can link to each other via corner-, edge-, and face-sharing bonds. The SiO4-, SiO5-, and SiO6-phases form SiO4- SiO5- and SiO6-grains respectively and they are not distributed uniformly in model. This results in the polymorphism in the silica glass at high density.

Graphical abstract

Keywords

Computational Methods 

References

  1. 1.
    A.R. Oganov, M.J. Gillan, G. David Price, Phys. Rev. B 71, 064104 (2005) ADSGoogle Scholar
  2. 2.
    V.P. Prakapenka, G. Shen, L.S. Dubrovinsky, M.L. Rivers, S.R. Sutton, J. Phys. Chem. Solids 65, 1537 (2004) ADSGoogle Scholar
  3. 3.
    R. Vuilleumier, N. Sator, B. Guillot, Geochim. Cosmochim. Acta 73, 6313 (2009) ADSGoogle Scholar
  4. 4.
    T. Tsuchiya, J. Tsuchiya, Proc. Natl. Acad. Sci. 108, 4 (2011) Google Scholar
  5. 5.
    J. Geske, B. Drossel, M. Vogel, AIP Adv. 6, 035131 (2016) ADSGoogle Scholar
  6. 6.
    D.M. Teter, R.J. Hemley, G. Kresse, J. Hafner, Phys. Rev. Lett. 80, 2145 (1998) ADSGoogle Scholar
  7. 7.
    B.B. Karki, B. Dipesh, L. Stixrude, Phys. Rev. B 76, 104205 (2007) ADSGoogle Scholar
  8. 8.
    C. Prescher et al., Proc. Natl. Acad. Sci. 83, 10041 (2017) Google Scholar
  9. 9.
    P.K. Hung, N.V. Hong, Eur. Phys. J. B 71, 105 (2009) ADSGoogle Scholar
  10. 10.
    L.T. San, N.V. Hong, P.K. Hung, High Pressure Res. 36, 187 (2016) ADSGoogle Scholar
  11. 11.
    P.K. Hung, N.V. Hong, L.T. Vinh, J. Phys.: Condens. Matter 19, 466103 (2007) ADSGoogle Scholar
  12. 12.
    Q. Mei, C.J. Benmore, J.K.R. Weber, Phys. Rev. Lett. 98, 057802 (2007) ADSGoogle Scholar
  13. 13.
    R.L. Mozzi, B.E. Warren, J. Appl. Cryst. 2, 164 (1969) Google Scholar
  14. 14.
    D.I. Grimley, A.C. Wright, J. Non-Cryst. Solids 119, 49 (1990) ADSGoogle Scholar
  15. 15.
    A.C. Wright, J. Non-Cryst. Solids 179, 84 (1994) ADSGoogle Scholar
  16. 16.
    P.F. Mcmillan, B.T. Poe, Ph. Gillet, B. Reynard, Geochim. Cosmochim. Acta 58, 3653 (1994) ADSGoogle Scholar
  17. 17.
    R.G. Della Valle, H.C. Andersen, J. Phys. Chem. 97, 2682 (1992) Google Scholar
  18. 18.
    S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 39, 334 (2007) Google Scholar
  19. 19.
    A. Kerrache, V. Teboul, A. Monteil, Chem. Phys. 321, 69 (2006) Google Scholar
  20. 20.
    A. Takada, P. Richet, C.R.A. Catlow, G.D. Price, J. Non-Cryst. Solids 345–346, 224 (2004) ADSGoogle Scholar
  21. 21.
    P.H. Poole, M. Hemmati, C.A. Angell, Phys. Rev. Lett. 79, 2281 (1997) ADSGoogle Scholar
  22. 22.
    I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 63, 011202 (2000) ADSGoogle Scholar
  23. 23.
    T. Sato, N. Funamori, Phys. Rev. Lett. 101, 255502 (2008) ADSGoogle Scholar
  24. 24.
    T. Sato, N. Funamori, Phys. Rev. B 82, 184102 (2010) ADSGoogle Scholar
  25. 25.
    J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. B 52, 12690 (1995) ADSGoogle Scholar
  26. 26.
    A. Trave, P. Tangney, S. Scandolo, A. Pasquarello, R. Car, Phys. Rev. Lett. 89, 245504 (2002) ADSGoogle Scholar
  27. 27.
    A. Takada, J. Non-Cryst. Solids 499, 309 (2018) ADSGoogle Scholar
  28. 28.
    J.R. Rustad, D.A. Yuen, Phys. Rev. B 44, 2108 (1991) ADSGoogle Scholar
  29. 29.
    P.K. Hung, L.T. Vinh, T. Ba Van, N.V. Hong, N.V. Yen, J. Non-Cryst. Solids 462, 1 (2017) ADSGoogle Scholar
  30. 30.
    L.S. Dubrovinsky, N.A. Dubrovinskaya, S.K. Saxena, F. Tutti, S. Rekhi, T.L. Bihan, G. Shen, J. Hu, Chem. Phys. Lett. 333, 264 (2001) ADSGoogle Scholar
  31. 31.
    D. Andrault, G. Fiquet, F. Guyot, M. Hanfland, Science 282, 720 (1998) ADSGoogle Scholar
  32. 32.
    D. Andrault, R.J. Angel, J.L. Mosenfelder, T.L. Bihan, Am. Miner. 88, 301 (2003) ADSGoogle Scholar
  33. 33.
    I. Saika-Voivod, F. Sciortino, T. Grande, P.H. Poole, Phys. Rev. E 70, 061507 (2004) ADSGoogle Scholar
  34. 34.
    I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 63, 011202 (2001) ADSGoogle Scholar
  35. 35.
    D.J. Lacks, Phys. Rev. Lett. 84, 4629 (2000) ADSGoogle Scholar
  36. 36.
    O. Mishima, L.D. Calvert, E. Whalley, Nature 314, 76 (1985) ADSGoogle Scholar
  37. 37.
    O. Mishima, K. Takemura, K. Aoki, Science 254, 406 (1991) ADSGoogle Scholar
  38. 38.
    O. Mishima, J. Chem. Phys. 100, 5910 (1994) ADSGoogle Scholar
  39. 39.
    K. Winkel, M.S. Elsaesser, E. Mayer, T. Loerting, J. Chem. Phys. 128, 044510 (2008) ADSGoogle Scholar
  40. 40.
    T. Loerting, N. Giovambattista, J. Phys.: Condens. Matter 18, R919 (2006) ADSGoogle Scholar
  41. 41.
    P. Gallo et al., Chem. Rev. 116, 7463 (2016) Google Scholar
  42. 42.
    M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984) ADSGoogle Scholar
  43. 43.
    R.J. Hemley, H.K. Mao, P.M. Bell, B.O. Mysen, Phys. Rev. Lett. 57, 747 (1986) ADSGoogle Scholar
  44. 44.
    E. Lascaris, M. Hemmati, S.V. Buldyrev, H. Eugene Stanley, C. Austen Angell, J. Chem. Phys. 140, 224502 (2014) ADSGoogle Scholar
  45. 45.
    E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016) ADSGoogle Scholar
  46. 46.
    R. Chen, E. Lascaris, J.C. Palmer, J. Chem. Phys. 146, 234503 (2017) ADSGoogle Scholar
  47. 47.
    M.S. Somayazulu et al., J. Phys.: Condens. Matter 5, 6345 (1993) ADSGoogle Scholar
  48. 48.
    J.S. Tse, D.D. Klug, Y. LePage, Phys. Rev. B 46, 5933 (1992) ADSGoogle Scholar
  49. 49.
    W. Jin, R.K. Kalia, P. Vashishta, J.P. Rino, Phys. Rev. Lett. 71, 3146 (1993) ADSGoogle Scholar
  50. 50.
    N.V. Hong, M.T. Lan, N.T. Nhan, P.K. Hung, Appl. Phys. Lett. 102, 191908 (2013) ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Hong
    • 1
  • L. T. Vinh
    • 2
    • 3
    Email author
  • P. K. Hung
    • 1
  • M. V. Dung
    • 4
    • 5
  • N. V. Yen
    • 6
  1. 1.Department of Computational PhysicsHanoi University of Science and TechnologyHanoiViet Nam
  2. 2.Simulation in Materials Science Research Group, Advanced Institute of Materials Science, Ton Duc Thang UniversityHo Chi Minh CityViet Nam
  3. 3.Faculty of Electrical and Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityViet Nam
  4. 4.Institute of Applied Materials Science, Vietnam Academy of Science and TechnologyHo Chi Minh CityViet Nam
  5. 5.Thu Dau Mot UniversityBinh Duong ProvinceViet Nam
  6. 6.Institute of Research and Development, Duy Tan UniversityDa NangViet Nam

Personalised recommendations