Advertisement

Statistical dynamics of early creep stages in disordered materials

  • David Fernandez Castellanos
  • Michael ZaiserEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

When materials are loaded below their short-term strength over extended periods, a slow time-dependent process known as creep deformation takes place. During creep deformation, the structural properties of a material evolve as a function of time. By means of a generic coarse-grained mesoscopic elastoplastic model which envisages deformation as a sequence of stochastically activated discrete events, we study the creep deformation of disordered materials. We find that the structural evolution of the material during creep modifies not only the average material properties but also changes the statistics of those properties. We analyze the emergence of correlations in the strain localization and deformation activity patterns, the variation of the event rate and the evolution of the inter-event time distribution. We find that the event rate follows the Omori law of aftershocks, which is the discrete counterpart of Andrade’s transient creep law, and that the exponent of these laws only depends on the microstructural heterogeneity. Finally, we find during the initial stages of transient creep a transition from Poisson distributed inter-event times towards a non-trivial power law distribution.

Graphical abstract

References

  1. 1.
    P. Phillips, London Edinburgh Dublin Philos. Mag. J. Sci. 9, 513 (1905) CrossRefGoogle Scholar
  2. 2.
    E. Andrade, F.T. Trouton, Proc. R. Soc. Lond. A 84, 1 (1910) ADSCrossRefGoogle Scholar
  3. 3.
    H.M. Lee, X.L. Liu, W.F. Chen, J. Struct. Eng. 117, 3135 (1991) CrossRefGoogle Scholar
  4. 4.
    N.H. Sleep, M.L. Blanpied, Nature 359, 687 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    F. Louchet, P. Duval, Int. J. Mater. Res. 100, 1433 (2009) CrossRefGoogle Scholar
  6. 6.
    A.H. Cottrell, Philos. Mag. Lett. 75, 301 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    I. Main, Geophys. J. Int. 142, 151 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    M. Zaiser, J. Mech. Behav. Mater. 22, 3 (2013) CrossRefGoogle Scholar
  9. 9.
    A. Schneider, B. Clark, C. Frick, P. Gruber, E. Arzt, Mater. Sci. Eng. A 508, 241 (2009) CrossRefGoogle Scholar
  10. 10.
    F. Omori, J. Coll. Sci. Imp. Univ. Tokyo 7, 111 (1894) Google Scholar
  11. 11.
    T. Utsu, Y. Ogata, R.S. Matsu’ura, J. Phys. Earth 43, 1 (1995) CrossRefGoogle Scholar
  12. 12.
    S. Lennartz-Sassinek, I.G. Main, M. Zaiser, C.C. Graham, Phys. Rev. E 90, 052401 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    J. Baró, A. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Phys. Rev. Lett. 110, 088702 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    M. Leocmach, C. Perge, T. Divoux, S. Manneville, Phys. Rev. Lett. 113, 038303 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    L.W. McFaul, W.J. Wright, X. Gu, J.T. Uhl, K.A. Dahmen, Phys. Rev. E 97, 063005 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    A.H. Cottrell, Philos. Mag. Lett. 84, 685 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    M.-C. Miguel, A. Vespignani, M. Zaiser, S. Zapperi, Phys. Rev. Lett. 89, 165501 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    M. Zaiser, P. Hähner, Mater. Sci. Eng. A 270, 2999 (1999) CrossRefGoogle Scholar
  19. 19.
    M. Zaiser, E. Aifantis, Int. J. Plasticity 22, 1432 (2006) CrossRefGoogle Scholar
  20. 20.
    A. Argon, Acta Metal. 27, 47 (1979) CrossRefGoogle Scholar
  21. 21.
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007) CrossRefGoogle Scholar
  22. 22.
    J.-O. Krisponeit, S. Pitikaris, K.E. Avila, S. Küchemann, A. Krüger, K. Samwer, Nat. Commun. 5, 3616 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    M. Heap, P. Baud, P. Meredith, S. Vinciguerra, A. Bell, I. Main, Earth Planet. Sci. Lett. 307, 71 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    J. Rosti, J. Koivisto, L. Laurson, M.J. Alava, Phys. Rev. Lett. 105, 100601 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    V.B. Nguyen, T. Darnige, A. Bruand, E. Clement, Phys. Rev. Lett. 107, 138303 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    A. Nicolas, E.E. Ferrero, K. Martens, J.-L. Barrat, Rev. Mod. Phys. 90, 045006 (2018) ADSCrossRefGoogle Scholar
  27. 27.
    A. Barbot, M. Lerbinger, A. Hernandez-Garcia, R. García-García, M.L. Falk, D. Vandembroucq, S. Patinet, Phys. Rev. E 97, 033001 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    S. Patinet, D. Vandembroucq, M.L. Falk, Phys. Rev. Lett. 117, 045501 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    Z. Budrikis, D.F. Castellanos, S. Sandfeld, M. Zaiser, S. Zapperi, Nat. Commun. 8, 15928 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    J. Lin, E. Lerner, A. Rosso, M. Wyart, Proc. Natl. Acad. Sci. 111, 14382 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    M. Ozawa, L. Berthier, G. Biroli, A. Rosso, G. Tarjus, Proc. Natl. Acad. Sci. 115, 6656 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    M. Talamali, V. Petäjä, D. Vandembroucq, S. Roux, Phys. Rev. E 84, 016115 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    E. Cubuk, R.J.S. Ivancic, S.S. Schoenholz, D.J. Strickland, A. Basu, Z.S. Davidson, N.C. Keim, Science 358, 1033 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    D. Wei, J. Yang, M.Q. Jiang, B.C. Wei, Y.J. Wang, L.H. Dai, Phys. Rev. B 99, 014115 (2019) ADSCrossRefGoogle Scholar
  35. 35.
    Z. Budrikis, S. Zapperi, Phys. Rev. E 88, 062403 (2013) ADSCrossRefGoogle Scholar
  36. 36.
    S. Sandfeld, Z. Budrikis, S. Zapperi, D. Fernandez Castellanos, J. Stat. Mech. Theory Exp. 2015, P02011 (2015) CrossRefGoogle Scholar
  37. 37.
    D. Tüszes, P. Ispanovity, M. Zaiser, Int. J. Fract. 205, 139 (2017) CrossRefGoogle Scholar
  38. 38.
    S. Merabia, F. Detcheverry, Europhys. Lett. 116, 46003 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    D.F. Castellanos, M. Zaiser, Phys. Rev. Lett. 121, 125501 (2018) ADSCrossRefGoogle Scholar
  40. 40.
    D. Bouttes, D. Vandembroucq, AIP Conf. Proc. 1518, 481 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    C. Liu, E.E. Ferrero, K. Martens, J.-L. Barrat, Soft Matter 14, 8306 (2018) ADSCrossRefGoogle Scholar
  42. 42.
    M.J. Alava, P.K.V.V. Nukala, S. Zapperi, J. Phys. D: Appl. Phys. 42, 214012 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    C. Liu, E.E. Ferrero, F. Puosi, J.-L. Barrat, K. Martens, Phys. Rev. Lett. 116, 065501 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    H. Petryk, Arch. Comput. Methods Eng. 4, 111 (1997) MathSciNetCrossRefGoogle Scholar
  45. 45.
    M. Zaiser, P. Hähner, Mater. Sci. Eng. A 238, 399 (1997) CrossRefGoogle Scholar
  46. 46.
    E. Gruber, Berichte der Bunsengesellschaft für physikalische Chemie 82, 1019 (1978) Google Scholar
  47. 47.
    M. Zhang, Y.M. Wang, F.X. Li, S.Q. Jiang, M.Z. Li, L. Liu, Sci. Rep. 7, 625 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    M. Warren, J. Rottler, Phys. Rev. E 78, 041502 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    A. Schmid, J.-R. Grasso, J. Geophys. Res. Solid Earth 117, B07302 (2012) ADSGoogle Scholar
  50. 50.
    M. Popović, T.W.J. de Geus, M. Wyart, Phys. Rev. E 98, 040901 (2018) ADSCrossRefGoogle Scholar
  51. 51.
    K.-J. Bathe, Finite Element Procedures (Prentice-Hall, 1996) Google Scholar
  52. 52.
    J. Fish, T. Belytschko, A First Course in Finite Elements (Wiley, 2007) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials Simulation, University of Erlangen-NürnbergFürthGermany

Personalised recommendations