Substrate strain and doping effects on the crystal structure of SrNbxTi1−xO3

  • Luis C. O. DacalEmail author
  • Andres Cantarero
  • Valerio Olevano
Regular Article


Strontium titanate, SrTiO3 (STO), is an interesting material for both fundamental studies and technological applications. Modifications of the atomic and crystal structure by doping, e.g. replacing titanium with niobium atoms, and by strain, i.e. by growing STO on a different substrate such as lanthanum aluminate, LaAlO3 (LAO), have been proposed to tune the STO electronic, optical and transport properties for applications. Here we report the results of ab initio density-functional theory (DFT) simulations of both strain and Nb-doping effects, independently and joint, on the STO crystal structure. We found that the DFT energy differences among the three commonly observed STO crystal structures, Pm3̅m, P4∕mmm, and I4∕mcm, are very small, <2.6 × 10−4 Ry, so that the ground-state cannot be determined unambiguously at this level of theory and physics. Our calculations show that an in-plane strain, at least at the level of only − 0.4% as observed in STO on LAO, does not lead to the expected increase in c toward tetragonal symmetry, where c is the length of the cell axis perpendicular to the plane. Instead, c also is reduced and the cubic symmetry tends to be restored. Nb doping, even at the maximum experimental level of 3.7%, does not have significant effects on lattice parameters. The latter result is confirmed also under the presence of strain, so we could not find any crossed effect of strain and doping.

Graphical abstract


Solid State and Materials 


  1. 1.
    V. Martelli, J.L. Jiménez, M. Continentino, E. Baggio-Saitovitch, K. Behnia, Phys. Rev. Lett. 120, 125901 (2018) ADSCrossRefGoogle Scholar
  2. 2.
    W.D. Rice, P. Ambwani, M. Bombeck, J.D. Thompson, G. Haugstad, C. Leighton, S.A. Crooker, Nat. Mater. 13, 481 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    B. Himmetoglu, A. Janotti, H. Peelaers, A. Alkauskas, C.G.V. de Walle, Phys. Rev. B 90, 241204 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    G. Gupta, T. Nautiyal, S. Auluck, Phys. Rev. B 69, 052101 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S. Wu, X. Luo, S. Turner, H. Peng, W. Lin, J. Ding, A. David, B. Wang, G.V. Tendeloo, J. Wang, T. Wu, Phys. Rev. X 3, 041027 (2013) Google Scholar
  6. 6.
    V.K. Guduru, A. McCollam, A. Jost, S. Wenderich, H. Hilgenkamp, J.C. Maan, A. Brinkman, U. Zeitler, Phys. Rev. B 88, 241301 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    E. Breckenfeld, N. Bronn, J. Karthik, A.R. Damodaran, S. Lee, N. Mason, L.W. Martin, Phys. Rev. Lett. 110, 19604 (2013) CrossRefGoogle Scholar
  8. 8.
    Z.Q. Liu, C.J. Li, W.M. Lu, X.H. Huang, Z. Huang, S.W. Zeng, X.P. Qiu, L.S. Huang, A. Annadi, J.S. Chen, J.M.D. Coey, T. Venkatesan, Ariando, Phys. Rev. X 3, 021010 (2013) Google Scholar
  9. 9.
    A. Ron, Y. Dagan, Phys. Rev. Lett. 112, 136801 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    M. Tomczyk, G. Cheng, H. Lee, S. Lu, A. Annadi, J.P. Veazey, M. Huang, P. Irvin, S. Ryu, C.B. Eom, J. Levy, Phys. Rev. Lett. 117, 096801 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    P. Lee, V. Singh, G. Guo, H.J. Liu, J.C. Lin, Y.H. Chu, C. Chen, M.W. Chu, Nat. Commun. 7, 12773 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    G. Panomsuwan, O. Takai, N. Saito, Appl. Phys. Lett. 105, 051911 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    F. He, B.O. Wells, Z.G. Ban, S.P. Alpay, S. Grenier, S.M. Shapiro, W. Si, A. Clark, X.X. Xi, Phys. Rev. B 70, 235405 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    D. Zou, Y. Liu, S. Xie, J. Lin, J. Li, Chem. Phys. Lett. 586, 159 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    A. Janotti, D. Steiauf, C.G.V. de Walle, Phys. Rev. B 84, 201304 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    S. Ohta, T. Nomura, H. Ohta, K. Koumoto, J. Appl. Phys. 97, 034106 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Baniecki, M. Ishii, H. Aso, K. Kobayashi, K. Kurihara, K. Yamanaka, A. Vailionis, R. Schafranek, Appl. Phys. Lett. 99, 232111 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Baniecki, M. Ishii, H. Aso, K. Kurihara, D. Ricinschi, J. Appl. Phys. 113, 013701 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    P.K. Gogoi, L. Sponza, D. Schmidt, T.C. Asmara, C. Diao, J.C.W. Lim, S.M. Poh, S.i. Kimura, P.E. Trevisanutto, V. Olevano, A. Rusydi, Phys. Rev. B 92, 035119 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    L. Sponza, V. Véniard, F. Sottile, C. Giorgetti, L. Reining, Phys. Rev. B 87, 235102 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    F. Sottile, M. Marsili, V. Olevano, L. Reining, Phys. Rev. B 76, 161103 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    T. Rangel, A. Ferretti, P.E. Trevisanutto, V. Olevano, G.M. Rignanese, Phys. Rev. B 84, 045426 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    J. Chen, T. Sekiguchi, J. Li, S. Ito, W. Yi, A. Ogura, Appl. Phys. Lett. 106, 102109 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    C. Rodenbücher, M. Luysberg, A. Schwedt, V. Havel, F. Gunkel, J. Mayer, R. Waser, Sci. Rep. 6, 32250 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    A. Sarantopoulos, E. Ferreiro-Vila, V. Pardo, C. Magén, M.H. Aguirre, F. Rivadulla, Phys. Rev. Lett. 115, 166801 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    F. He, B.O. Wells, S.M. Shapiro, Phys. Rev. Lett. 94, 176101 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) Google Scholar
  28. 28.
    K. Lejaeghere, et al., Science 351, aad3000 (2016) CrossRefGoogle Scholar
  29. 29.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Turzhevsky, D.L. Novikov, V.A. Gubanov, A.J. Freeman, Phys. Rev. B 50, 3200 (1994) ADSCrossRefGoogle Scholar
  32. 32.
    H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, B. Feng, H. Hayashi, T. Tohei, I. Tanaka, Y. Ikuhara, H. Ohta, J. Appl. Phys. 121, 185102 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    A.I. Lebedev, Phys. Solid State 58, 300 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Estudos Avançados, IEAv-CTASão José dos Campos – SPBrazil
  2. 2.Molecular Science Institute, Universitat de ValènciaValenciaSpain
  3. 3.Université Grenoble AlpesGrenobleFrance
  4. 4.European Theoretical Spectroscopy Facility (ETSF) and CNRS, Institut NéelGrenobleFrance

Personalised recommendations