Advertisement

Effect of crystal orientation on initiation and propagation of crack: Phase field crystal model study

  • Yu-jiang Lu
  • Ying-jun GaoEmail author
  • Qian-qian Deng
  • Zhe-yuan Liu
  • Yi-xuan Li
  • Zong-ji Huang
  • Zhi-rong Luo
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Topical issue: Multiscale Materials Modeling

Abstract

The crystal phase field (PFC) method is used to simulate the propagation of the nano-crack of samples with different crystal orientations under the strain of the uniaxial tensile. The results show that the different crystal orientations have a significant effect on the initiation and propagation of the cracks. For the samples with the orientation angles of 5° and 20°, the notch is directly cracked due to the strain concentration at the dislocation of the crack tip. The cracks mainly show a mode of the brittle expansion, and its edges show smooth planar features. For the samples with the orientation angles of 10° and 15°, the dislocation is firstly emitted at the notch to generate vacancies by dislocation slipping. The vacancies grow and connect to form cracks. This process of the crack propagation belongs to the mode of the ductile crack with the rough edges. The results are consistent with that of the molecular dynamic and experimental results.

Graphical abstract

References

  1. 1.
    R.-y. Tian, C.-j. Hang, Y.-h. Tian, J.-y. Feng, J. Alloys. Compd. 777, 463 (2019) CrossRefGoogle Scholar
  2. 2.
    J.-p. Liu, D.-B. Xiong, Y.-s. Su, Q. Guo, Z.-q. Li, D. Zhang, Mater. Sci. Eng. A 739, 132139 (2019) CrossRefGoogle Scholar
  3. 3.
    J.-Y. Wang, H.-T. Jiang, X.-G. Duan, H.-T. Lin, P. Qiu, Z.-L. Mi, Mater. Sci. Eng. A 739, 254 (2019) CrossRefGoogle Scholar
  4. 4.
    T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Mater. 48, 4917 (2000) CrossRefGoogle Scholar
  5. 5.
    X.-l. Cai, D.-q. Sun, H.-m. Li, C. Meng, L. Wang, C.-j. Shen, Opt. Laser Technol. 111, 205 (2019) ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Davies, D.W. Dean, M. Yatom, K.M. Nikbin, Mater. Sci. Eng. A 510–511, 202 (2009) CrossRefGoogle Scholar
  7. 7.
    Z.X. Wen, N.X. Hou, Z.F. Yue, Mater. Sci. Eng. A 510–511, 284 (2009) CrossRefGoogle Scholar
  8. 8.
    M. Adlzadeh, H.M. Shodja, H.R. Tabar, Comput. Mater. Sci. 42, 186 (2008) CrossRefGoogle Scholar
  9. 9.
    X.H. Wu, J.Z. Xiang, in Modern Material Computation and Design (Electronic Industrial Press, Beijing, 2002), 1 Google Scholar
  10. 10.
    K. Yashiro, Comput. Mater. Sci. 112, 120 (2016) CrossRefGoogle Scholar
  11. 11.
    F.-L. Tang, H.-M. Cai, H.-W. Bao, H.-T. Xue, W.-J. Lu, L. Zhu, Z.-Y. Rui, Comput. Mater. Sci. 84, 232 (2014) CrossRefGoogle Scholar
  12. 12.
    Y.-L. Li, W.-P. Wu, N.-L. Li, Y. Qi, Comput. Mater. Sci. 104, 212 (2015) CrossRefGoogle Scholar
  13. 13.
    K. Yashiro. Comput. Mater. Sci. 131, 220 (2017) CrossRefGoogle Scholar
  14. 14.
    Y. Qi, P.E. Krajewski, Acta Mater. 55, 1555 (2007) CrossRefGoogle Scholar
  15. 15.
    Y.-j. Gao, Q.-q. Deng, L.-l. Huang, L. Ye, Z.-c. Wen, Z.-r. Luo, Comput. Mater. Sci. 130, 64 (2017) CrossRefGoogle Scholar
  16. 16.
    P. Stefanovic, M. Haataja, N. Provatas, Phys. Rev. E 80, 046107 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    P. Stefanovic, M. Haataja, N. Provatas, Phys. Rev. Lett. 96, 22504 (2006) CrossRefGoogle Scholar
  18. 18.
    K.R. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    P.Y. Chan, G. Goldenfeld, J. Dantzig, Phys. Rev. E 79, 035701 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Schwalbach, J.A. Warren, K.A. Wu, Phys. Rev. E 88, 023306 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    Y.-j. Gao, Z.R. Luo, L.L. Huang, H. Mao, C.G. Huang, K. Lin, Modell. Simul. Mater. Sci. Eng. 24, 055010 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    G. Kocher, N. Provatas, Phys. Rev. Lett. 114, 155501 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    V. Fallah, A. Korinek, N. Ofori-Opoku et al., Acta Mater. 82, 457 (2015) CrossRefGoogle Scholar
  24. 24.
    K. Wu, P.W. Voorhees, Acta Mater. 60, 407 (2012) CrossRefGoogle Scholar
  25. 25.
    Y.J. Gao, Z.R. Luo, L.L. Huang, H. Mao, C.G. Huang, K. Lin, Modell. Simul. Mater. Sci. Eng. 24, 055010 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    S. Hu, Z. Chen, G. Xu, W. Xi, Y. Peng, Comput. Mater. Sci. 124, 195 (2016) CrossRefGoogle Scholar
  27. 27.
    L.-y. Kong, Y.-j. Gao, Q.-q. Deng, Z.-r. Luo, Y.-j. Lu, Materials 11, 1805 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    Y.J. Gao, L.L. Huang, Q.Q. Deng, Acta Mater. 117, 238 (2016) CrossRefGoogle Scholar
  29. 29.
    G. Tegze, G. Bansel, G.I. Tóth, T. Pusztai, Z.-y. Fan, L. Gránásy, J. Comput. Phys. 228, 1612 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    W.-q. Zhou, J.-c. Wang, Z.-j. Wang, Z.-F. Huang, Phys. Rev. E. 99, 013302 (2019) ADSCrossRefGoogle Scholar
  31. 31.
    Y.-m. Xing, F.-l. Dai, W. Yang, Sci. China Ser. A 8, 721 (2000) Google Scholar
  32. 32.
    J. Weertman, Mater. Sci. Eng. A 468–470, 59 (2007) CrossRefGoogle Scholar
  33. 33.
    Y.-g. Zhou, Z.-y. Yang, Z.-x. Lu, Mater. Sci. Eng. A 599, 116 (2014) CrossRefGoogle Scholar
  34. 34.
    M.-x. Huang, Z.-h. Li, J. Mech. Phys. Solids 52, 1991 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-jiang Lu
    • 1
  • Ying-jun Gao
    • 1
    Email author
  • Qian-qian Deng
    • 1
  • Zhe-yuan Liu
    • 1
  • Yi-xuan Li
    • 1
  • Zong-ji Huang
    • 1
  • Zhi-rong Luo
    • 2
  1. 1.Guangxi Key Laboratory for the Relativistic Astrophysics, Guangxi Advanced Key Laboratory of Energy Materials, College of Physics Science and Engineering, Guangxi UniversityNanningP.R. China
  2. 2.Institute of Physics Science and Engineering Technology, Yulin Normal UniversityYulinP.R. China

Personalised recommendations