Advertisement

A solvable model of Landau quantization breakdown

  • Thierry ChampelEmail author
  • Serge Florens
Regular Article
  • 21 Downloads

Abstract

Physics of two-dimensional (2D) electron gases under perpendicular magnetic field often displays three distinct stages when increasing the field amplitude: a low field regime with classical magnetotransport, followed at intermediate field by a Shubnikov–de Haas phase where the transport coefficients present quantum oscillations, and, ultimately, the emergence at high field of the quantum Hall effect with perfect quantization of the Hall resistance. A rigorous demonstration of this general paradigm is still limited by the difficulty in solving models of quantum Hall bars with macroscopic lateral dimensions and smooth disorder. We propose here the exact solution of a simple model exhibiting similarly two sharp transitions that are triggered by the competition of cyclotron motion and potential-induced drift. As a function of increasing magnetic field, one observes indeed three distinct phases showing respectively fully broken, partially smeared, or perfect Landau level quantization. This model is based on a non-rotationally invariant, inverted 2D harmonic potential, from which a full quantum solution is obtained using 4D phase space quantization. The developed formalism unifies all three possible regimes under a single analytical theory, as well as arbitrary quadratic potentials, for all magnetic field values.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986) CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (Lond.) 438, 197 (2005) CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature (Lond.) 438, 201 (2005) CrossRefGoogle Scholar
  4. 4.
    J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, H.B. Weber, Phys. Rev. B 81, 195434 (2010) CrossRefGoogle Scholar
  5. 5.
    J. Falson, M. Kawasaki, Rep. Prog. Phys. 81, 1 (2018) CrossRefGoogle Scholar
  6. 6.
    H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, Y.P. Chen, Phys. Rev. Lett. 108, 216803 (2012) CrossRefGoogle Scholar
  7. 7.
    M.M. Fogler, A.Yu. Dobin, V.I. Perel, B.I. Shklovskii, Phys. Rev. B 56, 6823 (1997) CrossRefGoogle Scholar
  8. 8.
    M. Flöser, B.A. Piot, C.L. Campbell, D.K. Maude, M. Henini, R. Airey, Z.R. Wasilewski, S. Florens, T. Champel, New J. Phys. 15, 083027 (2013) CrossRefGoogle Scholar
  9. 9.
    R.B. Laughlin, Phys. Rev. B 23, 5632(R) (1981) CrossRefGoogle Scholar
  10. 10.
    B.I. Halperin, Phys. Rev. B 25, 2185 (1982) CrossRefGoogle Scholar
  11. 11.
    P. Streda, J. Phys. C 15, L717 (1982) CrossRefGoogle Scholar
  12. 12.
    D.J. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982) CrossRefGoogle Scholar
  13. 13.
    D.J. Thouless, Phys. Rev. B 27, 6083 (1984) MathSciNetCrossRefGoogle Scholar
  14. 14.
    A.H. MacDonald, P. Streda, Phys. Rev. B 29, 1616 (1984) CrossRefGoogle Scholar
  15. 15.
    R.E. Prange, S.M. Girvin (Eds.), The Quantum Hall Effect (Springer, New York, 1987) Google Scholar
  16. 16.
    M. Büttiker, Phys. Rev. B 38, 9375 (1988) CrossRefGoogle Scholar
  17. 17.
    M. Janssen, O. Viehweger, U. Fastenrath, J. Hadju, Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Germany, 1994) Google Scholar
  18. 18.
    B. Huckestein, Rev. Mod. Phys. 67, 357 (1995) CrossRefGoogle Scholar
  19. 19.
    I.A. Dmitriev, F. Evers, I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, P. Wölfle, Phys. Status Solidi B 245, 239 (2008) CrossRefGoogle Scholar
  20. 20.
    V. Fock, Z. Phys. 47, 446 (1928) CrossRefGoogle Scholar
  21. 21.
    C.G. Darwin, Proc. Camb. Philos. Soc. 27, 86 (1931) CrossRefGoogle Scholar
  22. 22.
    L. Landau, Z. Phys. 64, 629 (1930) CrossRefGoogle Scholar
  23. 23.
    H.A. Fertig, B.I. Halperin, Phys. Rev. B 36, 7969 (1987) CrossRefGoogle Scholar
  24. 24.
    M. Büttiker, Phys. Rev. B 41, 7906(R) (1990) CrossRefGoogle Scholar
  25. 25.
    J.K. Jain, S. Kivelson, Phys. Rev. B 37, 4111 (1988) CrossRefGoogle Scholar
  26. 26.
    A. Entelis, S. Levit, Phys. Rev. Lett. 69, 3001 (1992) CrossRefGoogle Scholar
  27. 27.
    V. Kagalovsky, Phys. Rev. B 53, 13656 (1996) CrossRefGoogle Scholar
  28. 28.
    T. Tochishita, M. Mizui, M.H. Kuratsuji, Phys. Lett. A 212, 304 (1996) MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Krasón, J. Milewski, Acta Phys. Pol. A 132, 94 (2017) Google Scholar
  30. 30.
    I.A. Malkin, V.I. Man’ko, Sov. Phys. JETP 28, 527 (1969) Google Scholar
  31. 31.
    T. Champel, S. Florens, Phys. Rev. B 75, 245326 (2007) CrossRefGoogle Scholar
  32. 32.
    T. Champel, S. Florens, L. Canet, Phys. Rev. B 78, 125302 (2008) CrossRefGoogle Scholar
  33. 33.
    T. Champel, S. Florens, Phys. Rev. B 80, 161311(R) (2009) CrossRefGoogle Scholar
  34. 34.
    T. Champel, S. Florens, Phys. Rev. B 80, 125322 (2009) CrossRefGoogle Scholar
  35. 35.
    T. Champel, S. Florens, Phys. Rev. B 82, 045021 (2010) CrossRefGoogle Scholar
  36. 36.
    K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R.A. Römer, R. Wiesendanger, M. Morgenstern, Phys. Rev. Lett. 101, 256802 (2008) CrossRefGoogle Scholar
  37. 37.
    K. Hashimoto, T. Champel, S. Florens, C. Sohrmann, J. Wiebe, Y. Hirayama, R.A. Römer, R. Wiesendanger, M. Morgenstern, Phys. Rev. Lett. 109, 116805 (2012) CrossRefGoogle Scholar
  38. 38.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys. (N.Y.) 111, 61 (1978) CrossRefGoogle Scholar
  39. 39.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys. (N.Y.) 111, 111 (1978) CrossRefGoogle Scholar
  40. 40.
    C.K. Zachos, D.B. Fairlie, T.L. Curtright (Eds.), Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific Series in 20th Century Physics (World Scientific, Singapore, 2005), Vol. 34 Google Scholar
  41. 41.
    A. Feldman, A.H. Kahn, Phys. Rev. B 1, 4584 (1970) CrossRefGoogle Scholar
  42. 42.
    S. Varro, J. Phys. A: Math. Gen. 17, 1631 (1984) CrossRefGoogle Scholar
  43. 43.
    V.I. Man’ko, E.D. Zhebrak, Opt. Spectrosc. 113, 624 (2012) CrossRefGoogle Scholar
  44. 44.
    E.D. Zhebrak, Phys. Scr. T153, 014063 (2013) CrossRefGoogle Scholar
  45. 45.
    T. Champel, S. Florens, M.E. Raikh, Phys. Rev. B 83, 125321 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Grenoble Alpes, CNRS, LPMMCGrenobleFrance
  2. 2.Université Grenoble Alpes, CNRS, Institut NéelGrenobleFrance

Personalised recommendations