Advertisement

Theoretical study of stress and strain distribution in coupled pyramidal InAs quantum dots embedded in GaAs by finite element method

  • XueFei Liu
  • ZiJiang Luo
  • Xun Zhou
  • JieMin Wei
  • Yi Wang
  • Xiang Guo
  • QiZhi Lang
  • Zhao DingEmail author
Regular Article
  • 28 Downloads

Abstract

Stress and strain distributions in and around a single or two-coupled pyramidal InAs quantum dots (QDs) embedded in GaAs are calculated by finite element methods according to the continuum elasticity theory. By changing the quantum dot spacing and thickness of cap layer, the results about strain and stress distributions show compressive strain and stress distribution in the QDs and relaxation undergoes two stages with different speeds for different quantum dot height, quantum width and thickness of cap layer. The stress and strain distributions of pyramidal QDs would not vary monotonously with geometric dimensions. The height of quantum dot and cap layer thickness can effectively adjust the vertical correlation of self-assembly QDs according to the calculation. The shape of stress distribution at surface of cap layer can be tuned from a quadrangle into a circle by increasing the thickness of cap layer or decreasing the height of quantum dot. Also, a new approach to grow quantum ring is found in this paper. The calculations of two-coupled QDs show that the self-assembly technology might fail if the horizontal distance between two QDs is not large enough. The stress induced by upper QDs will be relaxed to zero with a longer distance downwards is found in this paper.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    T. Gougousi, Prog. Cryst. Growth Charact. Mater. 62, 1 (2016) CrossRefGoogle Scholar
  2. 2.
    A. Assali, M. Bouslama, H. Abid, S. Zerroug, M. Ghaffour, F. Saidi, L. Bouzaiene, K. Boulenouar, Mater. Sci. Semicond. Process. 36, 192 (2015) CrossRefGoogle Scholar
  3. 3.
    K. Sudhir, K.M. Tarun, S. Auluck, Jpn. J. Appl. Phys. 47, 5417 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    I. Fraj, F. Saidi, Z. Zaaboub, L. Bouzaîene, L. Sfaxi, H. Maaref, Superlattices Microstruct. 82, 406 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    P. Navaeipour, A. Asgari, Optik 126, 119 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    P. Bhattacharya, Z. Mi, A.Z.M.S. Rahman, Reference Module in Materials Science and Materials Engineering (Elsevier, 2016) Google Scholar
  7. 7.
    S.S. Rusu, T. Oloinic, V.Z. Tronciu, Opt. Commun. 381, 140 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, Opt. Commun. 371, 138 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    M. Zhang, M. Wang, Z. Yang, J. Li, H. Qiu, J. Alloys Compd. 748, 537 (2018) CrossRefGoogle Scholar
  10. 10.
    B. Cui, X.-t. Feng, F. Zhang, Y.-l. Wang, X.-g. Liu, Y.-z. Yang, H.-s. Jia, New Carbon Mater. 32, 385 (2017) CrossRefGoogle Scholar
  11. 11.
    E.C. Weiner, R. Jakomin, D.N. Micha, H. Xie, P.Y. Su, L.D. Pinto, M.P. Pires, F.A. Ponce, P.L. Souza, Sol. Energy Mater. Sol. Cells 178, 240 (2018) CrossRefGoogle Scholar
  12. 12.
    K. Surana, R.M. Mehra, B. Bhattacharya, Mater. Today 5, 9108 (2018) Google Scholar
  13. 13.
    S. Yoon, S.H. Lee, J.C. Shin, J.S. Kim, S.J. Lee, J.-Y. Leem, S. Krishna, Curr. Appl. Phys. 18, 667 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    H. Ghadi, J. Patwari, P. Murkute, D. Das, P.K. Singh, S. Dubey, M. Bhatt, A. Chatterjee, A. Balgarkashi, S.K. Pal, S. Chakrabarti, J. Alloys Compd. 751, 337 (2018) CrossRefGoogle Scholar
  15. 15.
    D.Z.Y. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, J. Nguyen, L. Höglund, J.M. Mumolo, J.K. Liu, S.B. Rafol, C.J. Hill, S.D. Gunapala, Infrared Phys. Technol. 59, 146 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Cardimona, C.P. Morath, D.H. Guidry, V.M. Cowan, Infrared Phys. Technol. 59, 93 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    G.R. Liu, S.S.Q. Jerry, Semicond. Sci. Technol. 17, 630 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    S. Coppola, V. Vespini, F. Olivieri, G. Nasti, M. Todino, B. Mandracchia, V. Pagliarulo, P. Ferraro, Appl. Surf. Sci. 399, 160 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    T. Benabbas, Y. Androussi, A. Lefebvre, J. Appl. Phys. 86, 1945 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    W.M. Zhou, H. Wang, Y. Jiang, Eur. Phys. J. B 85, 37 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    M. Sabaeian, M. Shahzadeh, Physica E 61, 62 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    M. Bennour, L. Bouzaiene, F. Saidi, L. Sfaxi, H. Maaref, J. Alloys Compd. 647, 110 (2015) CrossRefGoogle Scholar
  24. 24.
    R. Parvizi, Physica B 456, 87 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    S. Shetty, S. Adhikary, B. Tongbram, A. Ahmad, H. Ghadi, S. Chakrabarti, J. Lumin. 158, 231 (2015) CrossRefGoogle Scholar
  26. 26.
    R. Thirayatorn, P. Moontragoon, V. Amornkitbamrung, S. Meansiri, Z. Ikonic, Comput. Phys. Commun. 191, 106 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Downes, D.A. Faux, E.P. O’Reilly, J. Appl. Phys. 81, 6700 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    C. Shu, Y. Liu, Acta Phys. Pol. A 129, 371 (2016) CrossRefGoogle Scholar
  29. 29.
    S.h. Guo Ruhai, S. Xiudong, Acta Phys. Sin. 53, 3487 (2004) Google Scholar
  30. 30.
    D. Granados, J.M. García, Appl. Phys. Lett. 82, 2401 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    T. Mano, N. Koguchi, J. Cryst. Growth 278, 108 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • XueFei Liu
    • 1
    • 2
    • 3
  • ZiJiang Luo
    • 1
    • 2
    • 4
  • Xun Zhou
    • 3
  • JieMin Wei
    • 1
    • 2
    • 5
  • Yi Wang
    • 1
    • 2
  • Xiang Guo
    • 1
    • 2
  • QiZhi Lang
    • 1
    • 2
  • Zhao Ding
    • 1
    • 2
    Email author
  1. 1.College of Big Data and Information Engineering, Guizhou University, Key Laboratory of Micro-Nano-Electronics of Guizhou ProvinceGuiyangP.R. China
  2. 2.Semiconductor Power Device Reliability Engineering Center of Ministry of EducationGuiyangP.R. China
  3. 3.College of Physics and Electronic Science, Guizhou Normal UniversityGuiyangP.R. China
  4. 4.College of Information, Guizhou University of Finance and EconomicsGuiyangP.R. China
  5. 5.Guizhou Institute of TechnologyGuiyangP.R. China

Personalised recommendations