Advertisement

Emergence of long range order for sublattice update in coupled map lattices

  • Ankosh D. Deshmukh
  • Maneesh B. Matte
  • Prashant M. GadeEmail author
Regular Article
  • 23 Downloads

Abstract

We study coupled map lattices in which lattice is divided into k sublattices updated sequentially. We obtain stability conditions for synchronized fixed point for any coupling. For synchronous update and nonlinear coupling, synchronized fixed point cannot be stabilized. But it is possible for a sublattice update. Novel bifurcations such as bifurcation to period-3 can be obtained in this case. Thus the phenomena which are usually not observed in coupled map lattices with synchronous dynamics can be observed with a sublattice update. We define an order parameter to quantify the transition to synchronization and observe a power law decay at the critical point. We also observe a power law decay of persistence at the critical point. The exponents change with k and approach a limiting value.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    P.M. Gade, C.K. Hu, Phys. Rev. E 62, 6409 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    Z. Jabeen, N. Gupte, Phys. Rev. E 72, 016202 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J. Miller, D.A. Huse, Phys. Rev. E 48, 2528 (1993) ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Gade, G.G. Sahasrabudhe, Phys. Rev. E 87, 052905 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    P. Marcq, H. Chaté, P. Manneville, Phys. Rev. E 55, 2606 (1997) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Rolf, T. Bohr, M.H. Jensen, Phys. Rev. E 57, R2503 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    S. Lepri, G. Giacomelli, A. Politi, F.T. Arecchi, Physica D 70, 235 (1994) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A.V. Mahajan, P.M. Gade, J. Stat. Mech.: Theory Exp. 2018, 023212 (2018) CrossRefGoogle Scholar
  11. 11.
    N. Gupte, T.M. Janaki, S. Sinha, https://arXiv:nlin/0205020 (2002)
  12. 12.
    S. Adachi, F. Peper, J. Lee, J. Stat. Phys. 114, 261 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    P.K. Mohanty, Phys. Rev. E 70, 045202 (2004) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M.A. Saif, P.M. Gade, J. Stat. Mech.: Theory Exp. 2009, P07023 (2009) Google Scholar
  15. 15.
    S.H. Strogatz,Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018) Google Scholar
  16. 16.
    M. Basu, U. Basu, S. Bondyopadhyay, P.K. Mohanty, H. Hinrichsen, Phys. Rev. Lett. 109, 015702 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    S.N. Majumdar, Curr. Sci. 77, 370 (1999) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia

Personalised recommendations