Advertisement

Excess conductivity in nano-carbon doped MgB2 superconductor

  • Ebrahim Rostamabadi
  • Shaban Reza GhorbaniEmail author
  • Xiaolin Wang
Regular Article
  • 8 Downloads

Abstract

In this research, the excess conductivity in 5 wt% nano-carbon doped MgB2 superconductor was systematically studied as a function of magnetic fieldby measurements of the resistivity. The mean field temperature was calculated using two different methods. Two- and three-dimensional (2D and 3D) models were used to scale the excess conductivity caused by fluctuations. The mean field of the coherence length for the sample was obtained by using the Aslamazo–Lockerian model in the region of critical temperature. A transition from the 2D to the 3D region was observed in different fields at a crossover temperature as the temperature increased. The crossover temperatures were obtained by using the Maki-Thompson–Lawrence-Doniach (MT–LD) model. The results show that the crossover temperature decreases as the field increases. The phase-relaxation time of the fluctuation pairs was obtained by using the crossover temperature. The fluctuation pair lifetime, τϕ, and the coherence length were obtained by using the transition temperature and the reduced temperature crossover values as functions of magnetic field. The phase-relaxation time decreases with increasing field. It was found that the excess conductivity has 2D dimensionality behavior due to the Cooper pairs.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Phys. Rev. Lett. 86, 4656 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    S.H. Han, P. Lunqvist, Ö. Rapp, Physica C 282–287, 1571 (1997) CrossRefGoogle Scholar
  4. 4.
    T. Park, M.B. Salamon, C.U. Jung, M.S. Park, K. Kim, S.I. Lee, Phys. Rev. B 66, 1345151 (2002) Google Scholar
  5. 5.
    S. Rajput, S. Chaudhary, J. Mater. 2013, 1 (2013) CrossRefGoogle Scholar
  6. 6.
    A.S. Sidorenko, L.R. Tagirov, A.N. Rossolenko, J. Exp. Theor. Phys. Lett. 76, 17 (2002) CrossRefGoogle Scholar
  7. 7.
    Y. Slimani, E. Hannachi, M. Zouaoui, F.B. Azzouz, M.B. Salem, J. Supercond. Nov. Magn. 31, 2339 (2018) CrossRefGoogle Scholar
  8. 8.
    Z. Hol’anová, J. Kacmarcik, P. Szabo, Physica C 404, 195 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    T. Masui, S. Lee, S. Tajima, Physica C 383, 299 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    T. Ishiguro, K. Yamaji, G. Saito, Superconductors (Springer, Berlin, 1998) Google Scholar
  11. 11.
    A.L. Solovjov, V.M. Dmitriev, H.U. Habermeier, I.E. Trofimov, Phys. Rev. B 55, 8551 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    L.G. Aslamazov, A.I. Larkin, Phys. Lett. A 26, 238 (1968) ADSCrossRefGoogle Scholar
  13. 13.
    R.S. Thompson, Phys. Rev. B 1, 327 (1970) ADSCrossRefGoogle Scholar
  14. 14.
    K. Maki, Prog. Theor. Phys. 39, 897 (1968) ADSCrossRefGoogle Scholar
  15. 15.
    W.E. Lawrence, S. Doniach, in Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda (Academic Press Japan, Kyoto, 1971), p. 361 Google Scholar
  16. 16.
    S. Hikami, A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988) ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Lee, S.R. Shenoy, Phys. Rev. Lett. 28, 1025 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    G.J. Ruggery, D.J. Thouless, J. Phys. F 6, 2063 (1976) ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Thouless, Phys. Rev. Lett. 34, 946 (1975) ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Bray, Phys. Rev. B 9, 4752 (1974) ADSCrossRefGoogle Scholar
  21. 21.
    S. Ullah, T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    M. Ausloos, C. Laurent, S.K. Patapis, C. Politis, H.L. Luo, P.A. Godelaine, F. Gillet, A. Dang, R. Cloots, Physica B 83, 355 (1991) Google Scholar
  23. 23.
    J.H. Kim, S.X. Dou, M.S.A. Hossain, X. Xu, J.L. Wang, D.Q. Shi, T. Nakane, H. Kumakura, Supercond. Sci. Technol. 20, 715 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    A. Esmaeili, H. Sedghi, J. Alloys Compd. 29, 537 (2012) Google Scholar
  25. 25.
    A.K. Ghosh, S.K. Bandyopadhyay, A.N. Basu, J. Appl. Phys. 86, 3247 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    P. Konsin, B. Sorkin, M. Ausloos, Supercond. Sci. Technol. 11, 1 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    B.K. Godwal, P. Modak, A.K. Verma, D.M. Gaitonde, R.S. Rao, Curr. Sci. 85, 1050 (2003) Google Scholar
  28. 28.
    Y.B. Xie, Phys. Rev. B 46, 997 (1992) Google Scholar
  29. 29.
    S.R. Ghorbani, X.L. Wang, J. Supercond. Nov. Mag. 31, 2349 (2018) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, Ferdowsi University of MashhadMashhadIran
  2. 2.Department of PhysicsPayame Noor UniversityTehranIran
  3. 3.Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, Faculty of Engineering, University of WollongongNorth WollongongAustralia

Personalised recommendations