Advertisement

Time evolution of entropy associated with diffusivity fluctuations: diffusing diffusivity approach

  • Yuichi IttoEmail author
Regular Article

Abstract

It has experimentally been found by Lampo et al. [Biophys. J. 112, 532 (2017)] that, for two different types of cell, the distribution of the diffusivities of RNA–protein particles over cytoplasm obeys an exponential law. Then, an interesting issue has been pointed out: this exponential distribution is the maximal entropy distribution. Here, time evolution of entropy associated with local fluctuations of the diffusivity is studied. The entropy rate under the diffusing diffusivity equation, which admits the exponential fluctuation as its stationary solution, is shown to be positive. The present result is expected to be useful for studying the dynamics of diffusivity fluctuations. Furthermore, the distribution of time being required for characteristic displacement of the RNA–protein particle is found to decay as a power law. A comment is also made on a formal analogy with the thermodynamic relation concerning temperature.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T.J. Lampo, S. Stylianidou, M.P. Backlund, P.A. Wiggins, A.J. Spakowitz, Biophys. J. 112, 532 (2017) ADSCrossRefGoogle Scholar
  2. 2.
    J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Höfling, T. Franosch, Rep. Prog. Phys. 76, 046602 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014) CrossRefGoogle Scholar
  5. 5.
    B. Wang, J. Kuo, S.C. Bae, S. Granick, Nat. Mater. 11, 481 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    W. He, H. Song, Y. Su, L. Geng, B.J. Ackerson, H.B. Peng, P. Tong, Nat. Commun. 7, 11701 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.V. Chechkin, F. Seno, R. Metzler, I.M. Sokolov, Phys. Rev. X 7, 021002 (2017) Google Scholar
  9. 9.
    Y. Itto, Phys. Lett. A 378, 3037 (2014) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Itto, inFrontiers in Anti-Infective Drug Discovery, edited by Atta-ur-Rahman, M. Iqbal Choudhary (Bentham Science, Sharjah, 2017), Vol. 5 Google Scholar
  11. 11.
    Y. Itto, J. Biol. Phys. 38, 673 (2012) CrossRefGoogle Scholar
  12. 12.
    Y. Itto, Phys. Lett. A 382, 1238 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    E. Van der Straeten, C. Beck, Phys. Rev. E 78, 051101 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    M.V. Chubynsky, G.W. Slater, Phys. Rev. Lett. 113, 098302 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    R. Jain, K.L. Sebastian, J. Phys. Chem. B 120, 3988 (2016) CrossRefGoogle Scholar
  16. 16.
    V. Sposini, A.V. Chechkin, F. Seno, G. Pagnini, R. Metzler, New J. Phys. 20, 043044 (2018) ADSCrossRefGoogle Scholar
  17. 17.
    E.T. Jaynes: Papers on Probability, Statistics and Statistical Physics, edited by R.D. Rosenkrantz (Kluwer, Dordrecht, 1989) Google Scholar
  18. 18.
    Y. Itto, Physica A 462, 522 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Itto, J. Phys.: Conf. Ser. 1035, 012004 (2018) Google Scholar
  20. 20.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943) ADSCrossRefGoogle Scholar
  21. 21.
    Lévy Flights and Related Topics in Physics, edited by M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Springer, Heidelberg, 1995) Google Scholar
  22. 22.
    I.Y. Wong, M.L. Gardel, D.R. Reichman, E.R. Weeks, M.T. Valentine, A.R. Bausch, D.A. Weitz, Phys. Rev. Lett. 92, 178101 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    P. Nelson,Biological Physics: Energy, Information, Life (W.H. Freeman and Company, New York, 2004) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Science Division, Center for General Education, Aichi Institute of TechnologyAichiJapan

Personalised recommendations