Advertisement

Effect of nonmetallic solutes on the stability of {10–12} tension twin boundary of zirconium: a first-principles study

  • Rongjian PanEmail author
  • Aitao Tang
  • Xiaoyong Wu
  • Lu Wu
  • Wen He
  • Bang Wen
  • Tingting Zheng
  • Haidong Wang
Regular Article
  • 11 Downloads

Abstract

Effect of nonmetallic solutes on {10–12} tension twin boundary (TB) are investigated using first-principles calculations. Fourteen kinds of interstitial sites near the {10–12} tension TB for four nonmetallic solutes such as C, N, O, and H are considered. The results show that the C and O atoms are much easier to segregate from the {10–12} tension TB to the octahedral site 1, causing the {10–12} tension TB more stable. The N atom is much easier to segregate from the {10–12} tension TB to the octahedral site 4, causing the {10–12} tension TB more stable. The H atom is much easier to segregate from the {10–12} tension TB to these 14 interstitial positions, causing the {10–12} tension TB more stable. The effect of C, N, or O atom on the stability of {10–12} tension TB is greater than that of H atom.

Graphical abstract

Keywords

Computational Methods 

References

  1. 1.
    A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, Scr. Mater. 49, 651 (2003) CrossRefGoogle Scholar
  2. 2.
    K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013) CrossRefGoogle Scholar
  4. 4.
    R.J. Pan, A.T. Tang, Y.R. Wang, X.Y. Wu, L. Wu, Comput. Condens. Matter 10, 22 (2017) CrossRefGoogle Scholar
  5. 5.
    R.J. Pan, A.T. Tang, X.Y. Wu, L. Wu, W. He, Mater. Lett. 204, 112 (2017) CrossRefGoogle Scholar
  6. 6.
    P.G. Partridge, Metall. Rev. 12, 169 (1967) Google Scholar
  7. 7.
    M.H. Yoo, Metall. Trans. A 12, 409 (1981) CrossRefGoogle Scholar
  8. 8.
    M. Arul Kumar, I.J. Beyerlein, C.N. Tomé, Acta Mater. 116, 143 (2016) CrossRefGoogle Scholar
  9. 9.
    P.-A. Juan, C. Pradalier, S. Berbenni, R.J. McCabe, C.N. Tomé, L. Capolungo, Acta Mater. 95, 399 (2015) CrossRefGoogle Scholar
  10. 10.
    M. Biget, G. Saada, J. Phys. III 5, 1833 (1995) Google Scholar
  11. 11.
    P.G. Oberson, Z.W. Wyatt, S. Ankem, Scr. Mater. 65, 638 (2011) CrossRefGoogle Scholar
  12. 12.
    L. Liang, O.B.M. Hardouin Duparc, Acta Mater. 10, 258 (2016) CrossRefGoogle Scholar
  13. 13.
    A. Kumar, J. Wang, C.N. Tomé, Acta Mater. 85, 144 (2015) CrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 16, 1748 (1977) ADSCrossRefGoogle Scholar
  18. 18.
    W.J. Joost, S. Ankem, M.M. Kuklja, Acta Mater. 105, 44 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rongjian Pan
    • 1
    Email author
  • Aitao Tang
    • 2
  • Xiaoyong Wu
    • 1
    • 3
  • Lu Wu
    • 1
    • 3
  • Wen He
    • 1
  • Bang Wen
    • 1
    • 3
  • Tingting Zheng
    • 1
  • Haidong Wang
    • 1
  1. 1.The First Sub-Institute, Nuclear Power Institute of ChinaChengduP.R. China
  2. 2.College of Materials Science and Engineering, Chongqing UniversityChongqingP.R. China
  3. 3.National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of ChinaChengduP.R. China

Personalised recommendations