First-order pinning interaction in type-II superconductors with Ginzburg–Landau descriptions

  • Yingxu LiEmail author
  • Guozheng Kang
  • Yuanwen Gao
Regular Article


The spontaneous magneto-elastic (ME) interaction dictates the coupling between vortex arrays and crystal lattice, triggered by the spontaneous vortex nucleation in mixed state. In Ginzburg–Landau theory, the pinning interaction is ascribed to the interaction energy of first-order defect strain field and spontaneous elastic field. The pinning force is therefore estimated as the force on a dislocation imposed by the spontaneous stress field. Subsequently, the first-order pinning is compared with the weak collective pinning quantitively. The magnetization contribution by the first-order pinning is a parabolic dependence with field H, while the magnetization of the collective pinning shows a severe suppression at high fields as H−3. The difference in magnetization is attributed to the energy characterization in pinning mechanisms. As for the critical current density, the combination of first-order and collective pinning generally reproduces the experimental data of Ba0.75K0.25Fe2As2 sample where the second magnetization peak (SMP) disappears. In this view, the elasticity effect in mixed state is sufficient to cause the vanishment of SMP, especially in samples with high pressure dependence of Tc.

Graphical abstract


Solid State and Materials 


  1. 1.
    G. Blatter, M.V. Feigel′Man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    P. Lipavský, K. Morawetz, J. Koláček, E.H. Brandt, Phys. Rev. B 76, 052502 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Kogan, Phys. Rev. B 88, 144514 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Li, G. Kang, Y. Gao, Europhys. Lett. 118, 27006 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    P. Miranović, L. Dobrosavljević-Grujić, V.G. Kogan, Phys. Rev. B 52, 12852 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    R. Labusch, Phys. Rev. 170, 470 (1968) ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Campbell, J.E. Evetts, Adv. Phys. 50, 1249 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    S. Shyam, J. Mosqueira, A.D. Alvarenga, D. Sćñora, A.S. Sefat, J.S. Salem-Sugui, Supercond. Sci. Technol. 30, 125007 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    A. Galluzzi, K. Buchkov, V. Tomov, E. Nazarova, A. Leo, G. Grimaldi, A. Nigro, S. Pace, M. Polichetti, Supercond. Sci. Technol. 31, 015014 (2018) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li, X. Li, G. Kang, Y. Gao, Supercond. Sci. Technol. 29, 104009 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Li, G. Kang, Y. Gao, Physica B 491, 70 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Li, G. Kang, Y. Gao, Ann. Phys. 530, 1800266 (2018) CrossRefGoogle Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn, (Butterworth-, Oxford, 1986) Google Scholar
  14. 14.
    J.W. Ekin, Supercond. Sci. Technol. 23, 083001 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    T. Katase, Y. Ishimaru, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe, H. Hosono, Nat. Commun. 2, 409 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    D.P. Norton et al., Science 274, 755 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    S. Sundar, S. Salem-Sugui, H.S. Amorim, H.H. Wen, K.A. Yates, L.F. Cohen, L. Ghivelder, Phys. Rev. B 95, 134509 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    S.Z. Lin, V.G. Kogan, Phys. Rev. B 95, 054511 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    V.G. Kogan, Phys. Rev. B 87, 020503 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong UniversityChengduP.R. China
  2. 2.Department of Mechanics and Engineering ScienceCollege of Civil Engineering and Mechanics, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations