Advertisement

Lévy noise induced transitions and enhanced stability in a birhythmic van der Pol system

  • René YamapiEmail author
  • Raoul Mbakob Yonkeu
  • Giovanni Filatrella
  • Jürgen Kurths
Regular Article
  • 7 Downloads

Abstract

This work describes the effects of Lévy noise on a birhythmic van der Pol like oscillator. The two periodic attractors are characterized by different periods, and the stability in the presence of Gaussian noise can be described by an effective, or quasi-potential. Numerical simulations demonstrate that in the presence of Lévy noise the induced escapes from an attractor to another are similar to the escapes between stable points in an ordinary potential. Assuming that the attractors are almost separated by a barrier of a quasi (or pseudo) potential, the theory for Lévy noise escapes captures the qualitative features of the escapes across the quasi-potential. The differences to the Gaussian case are more pronounced for large values of the Lévy index. We found that for the symmetric quasi-potential, the relative stability of the two attractors are similar, while in the asymmetric case the properties of the two attractors differ for increasing a. The global stability is also characterized by means of the residence times, that give indications for future theoretical analysis.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.A. Dubkov, B. Spagnolo, V. Uchaikin, Int. J. Bifurcat. Chaos 18, 2649 (2008) CrossRefGoogle Scholar
  2. 2.
    A. La Cognata, D. Valenti, A.A. Dubkov, B. Spagnolo, Phys. Rev. E 82, 011121 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    X. Yang, A.P. Petropulu, IEEE Trans. Signal Process. 51, 64 (2003) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    V. Bhatia, B. Mulgrew, A. Georgiadis, Signal Process. 86, 835 (2006) CrossRefGoogle Scholar
  5. 5.
    C. Li, G. Yu, in 2010 Second International Conference on Computer Modeling and Simulation (2010), Vol. 4, p. 386 Google Scholar
  6. 6.
    R. Saadane, M.E. Aroussi, M. Wahbi, in 3rd International Renewable and Sustainable Energy Conference (IRSEC) (2015), p. 1 Google Scholar
  7. 7.
    B. Chouri, M. Fabrice, A. Dandache, M.E. Aroussi, R. Saadane, in International Conference on Multimedia Computing and Systems (ICMCS) (2014), p. 1545 Google Scholar
  8. 8.
    S. Luryi, O. Semyonov, A. Subashiev, Z. Chen, Phys. Rev. B 86, 201201 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Subashiev, O. Semyonov, Z. Chen, S. Luryi, Phys. Lett. A 378, 266 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    D.S. Novikov, M. Drndic, L.S. Levitov, M.A. Kastner, M.V. Jarosz, M.G. Bawendi, Phys. Rev. B 72, 075309 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    X. Brokmann, J.-P. Hermier, G. Messin, P. Desbiolles, J.-P. Bouchaud, M. Dahan, Phys. Rev. Lett. 90, 120601 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    M. Kuno, D.P. Fromm, H.F. Hamann, A. Gallagher, D.J. Nesbitt, J. Chem. Phys. 115, 1028 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    G. Messin, J.P. Hermier, E. Giacobino, P. Desbiolles, M. Dahan, Opt. Lett. 26, 1891 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    A.M.S. Mohammed, Y.R. Koh, B. Vermeersch, H. Lu, P.G. Burke, A.C. Gossard, A. Shakouri, Nano Lett. 15, 4269 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    B. Vermeersch, A.M.S. Mohammed, G. Pernot, Y.R. Koh, A. Shakouri, Phys. Rev. B 91, 085203 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B 78, 225 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, B. Di Paola, Chaos, Solitons Fractals 81, 412 (2015) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, E. Gudowska-Nowak, Phys. Rev. E 91, 042713 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Dubkov, B. Spagnolo, Eur. Phys. J. B 65, 361 (2008) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Elyassami, K. Benjelloun, M. El Aroussi, Contemp. Eng. Sci. 9, 453 (2016) CrossRefGoogle Scholar
  22. 22.
    A. Barone, G. Paternó, Physics and Applications of the Josephson Effect (Wiley, New York, 1982) Google Scholar
  23. 23.
    C. Guarcello, D. Valenti, A. Carollo, B. Spagnolo, J. Stat. Mech.: Theory Exp. 2016, 054012 (2016) CrossRefGoogle Scholar
  24. 24.
    U. Briskot, I.A. Dmitriev, A.D. Mirlin, Phys. Rev. B 89, 075414 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    R. Yamapi, G. Filatrella, Phys. Rev. E 89, 052905 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Kautz, Phys. Rev. A 38, 2066 (1988) ADSCrossRefGoogle Scholar
  27. 27.
    R.L. Kautz, J. Appl. Phys. 76, 5538 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    R. Yamapi, G. Filatrella, M.A. Aziz-Alaoui, H.A. Cerdeira, Chaos 22, 043114 (2012) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Yamapi, G. Filatrella, M.A. Aziz-Aloui, Chaos 20, 013114 (2010) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Commun. Nonlinear Sci. Numer. Simul. 33, 70 (2016) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Physica A 466, 569 (2017) Google Scholar
  32. 32.
    A.V. Chechkin, V.Y. Gonchar, M. Szydlowsky, Phys. Plasmas 9, 78 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Chechkin, V.Yu. Gonchar, Zh. Eksp. Teor. Fiz. 118, 3 (2000) Google Scholar
  34. 34.
    Y. Sun, X. Zhou, arXiv:1701.04044v6
  35. 35.
    X. Wan, B. Zheng, G. Lin, Commun. Comput. Phys. 23, 408 (2018) MathSciNetGoogle Scholar
  36. 36.
    M. Högele, I. Pavlyukevich, Stochastic Anal. Appl. 32, 163 (2014) MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Högele, I. Pavlyukevich, arXiv:1405.5433v1
  38. 38.
    M. Högele, I. Pavlyukevich, Stochastics Dyn. 15, 1550019 (2015) MathSciNetCrossRefGoogle Scholar
  39. 39.
    F. Morán, A. Goldbeter, Biophys. Chem. 20, 149 (1984) CrossRefGoogle Scholar
  40. 40.
    A.V. Chechkin, V.Yu. Gonchar, J. Klafter, R. Metzler, Europhys. Lett. 72, 354 (2005) ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Chechkin, O.Yu. Sliusarenko, R. Metzler, J. Klafter, Phys. Rev. E 75, 041101 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    F. Kaiser, C. Eichwald, Int. J. Bifurcat. Chaos 1, 485 (1991) CrossRefGoogle Scholar
  43. 43.
    C. Eichwald, F. Kaiser, Int. J. Bifurcat. Chaos 1, 711 (1991) CrossRefGoogle Scholar
  44. 44.
    H.G. Enjieu Kadji, R. Yamapi, J.B. Chabi Orou, Chaos 17, 033113 (2007) ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi, P. Woafo, Chaos, Solitons Fractals 32, 862 (2007) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    R. Yamapi, B.R. Nana Nbendjo, H.G. Enjieu Kadji, Int. J. Bifurcat. Chaos 17, 1343 (2007) CrossRefGoogle Scholar
  47. 47.
    H.G. Enjieu Kadji, Synchronization dynamics of nonlinear self-sustained oscillations with applications in physics, engineering and biology, PhD Dissertation of Physics, Institut de Mathématiques et de Sciences Physiques (I.M.S.P.), Porto-Novo, Université d’Abomey-Calavi, Benin, June 2006 Google Scholar
  48. 48.
    F. Kaiser, Radio Sci. 17, 17S (1981) ADSCrossRefGoogle Scholar
  49. 49.
    V.-X. Li, A. Goldbeter, J. Theor. Biol. 138, 149 (1989) CrossRefGoogle Scholar
  50. 50.
    M.E. Jewett, D.B. Forger, R.E. Kronauer, J. Biol. Rhythms 14, 493 (1999) CrossRefGoogle Scholar
  51. 51.
    P. Indic, D.B. Forger, M.A. St. Hilaire, D.A. Dean II, E.N. Brown, R.E. Kronauer, E.B. Klerman, M.E. Jewett, Chronobiol. Int. 22, 613 (2005) CrossRefGoogle Scholar
  52. 52.
    S. Hartzell, M.S. Bartlett, L. Virgin, A. Porporato, J. Theor. Biol. 368, 83 (2015) CrossRefGoogle Scholar
  53. 53.
    F. Kaiser, Coherent Excitations in Biological Systems: Specific Effects in Externally Driven Self-Sustained Oscillating Biophysical Systems (Springer-Verlag, Berlin, Heidelberg, 1983) Google Scholar
  54. 54.
    F. Kaiser, in Biological Effects and Dosimetry of Nonionizing Radiation, edited by M. Grandolfo, S.M. Michaelson and A. Rindi (Plenum Press, NY, 1983), p. 251 Google Scholar
  55. 55.
    F. Kaiser, in Energy Transfer Dynamics, edited by T.W. Barret, H.A. Pohl (Springer, Berlin, 1987), p. 224 Google Scholar
  56. 56.
    F. Kaiser, Kleinheubacher Berichte 32, 395 (1989) Google Scholar
  57. 57.
    D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambrige University Press, New York, 2009) Google Scholar
  58. 58.
    R. Weron, Int. J. Mod. Phys. C 12, 209 (2001) ADSCrossRefGoogle Scholar
  59. 59.
    A. Janicki, A. Weron, Simulation and chaotic behavior of a-stable stochastic processes (Marcel Dekker, New York, 1994) Google Scholar
  60. 60.
    A. Janicki, Numerical and Statistical Approximation of Stochastic Differential Equations with Non–Gaussian Measures (HSC Monograph, Wroclaw, 1996) Google Scholar
  61. 61.
    Y. Xu, Y. Li, J. Li, J. Feng, H. Zha, J. Stat. Phys. 158, 131, (2015) CrossRefGoogle Scholar
  62. 62.
    K. Jacobs, Stochastic processes for physicists: Understanding Noisy Systems (Cambridge University Press, New York, 2010) Google Scholar
  63. 63.
    V. Pierro, L. Troiano, E. Mejuto, G. Filatrella, J. Comput. Phys. 361, 136 (2018) ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985) ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    R. Yamapi, A. Chéagé Chamgoué, G. Filatrella, P. Woafo, Eur. Phys. J. B 90, 153 (2017) ADSCrossRefGoogle Scholar
  66. 66.
    R. Mbakob Yonkeu, R. Yamapi, G. Filatrella, C. Tchawoua, Nonlinear Dyn. 84, 627 (2016) CrossRefGoogle Scholar
  67. 67.
    C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Nanotechnology 28, 134001 (2017) ADSCrossRefGoogle Scholar
  68. 68.
    C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Phys. Rev. Appl. 11, 044078 (2019) ADSCrossRefGoogle Scholar
  69. 69.
    N.V. Agudov, A.A. Dubkov, B. Spagnolo, Physica A 325, 144 (2003) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • René Yamapi
    • 1
    • 2
    Email author
  • Raoul Mbakob Yonkeu
    • 3
  • Giovanni Filatrella
    • 4
  • Jürgen Kurths
    • 2
    • 5
  1. 1.Fundamental Physics Laboratory, Physics of Complex System Group, Department of Physics, Faculty of Science, University of DoualaDoualaCameroon
  2. 2.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  3. 3.Laboratory of Mechanics and Materials, Department of Physics, Faculty of Science, University of Yaoundé IYaoundéCameroon
  4. 4.Department of Sciences and Technologies and Salerno unit of CNSIMUniversity of SannioBeneventoItaly
  5. 5.Department of PhysicsHumboldt UniversityBerlinGermany

Personalised recommendations