Advertisement

Stationary distribution simulation of rare events under colored Gaussian noise

  • Hua Li
  • Yong XuEmail author
  • Jürgen Kurths
  • Xiaole Yue
Regular Article
  • 21 Downloads

Abstract

Forward flux sampling (FFS) has provided a convenient and efficient way to simulate rare events in equilibrium as well as non-equilibrium stochastic systems. In the present paper, the FFS scheme is applied to systems driven by colored Gaussian noise through enlarging the dimension to deal with the non-Markovian property. Besides, the parameters of the FFS scheme have to be reconsidered. Interestingly, by analyzing the effect of colored Gaussian noise on stationary distributions, some results are found which are clearly different from the case of Gaussian white noise excitation. We mainly found that the probability of the occurrence of rare events is inversely proportional to the correlation time. Comparing to the case of Gaussian white noise with the same intensity, the presence of colored Gaussian noise exerts a hindrance to the occurrence of rare events. Meanwhile, the FFS results show a good agreement with those from Monte Carlo simulations, even for the colored Gaussian noise case. This provides a potential insight into rare events of systems under non-white Gaussian noise via the FFS scheme.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    B. Trend elkamp-schroer, F. Noe, Phys. Rev. X 6, 011009 (2016) Google Scholar
  2. 2.
    T. Huillet, H.F. Raynaud, Eur. Phys. J. B 12, 457 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    K. Kratzer, A. Arnold, R.J. Allen, J. Chem. Phys. 138, 164112 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Xu, H. Li, H.Y. Wang, W.T. Jia, X.L. Yue, J. Kurths, J. Appl. Mech. 84, 091004 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    E.E. Zotos, Nonlinear Dyn. 85, 1613 (2016) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y.G. Li, Y. Xu, J. Kurths, X.L. Yue, Phys. Rev. E 94, 042222 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    S. Sattari, K.A. Mitchell, Chaos 27, 113104 (2017) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J.A. Bucklew, Introduction to Rare Event Simulation (Springer, Berlin, 2010) Google Scholar
  10. 10.
    V.D. Costa, Y. Henry, F. Bardou, M. Romeo, K. Ounadjela, Eur. Phys. J. B 13, 297 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    H. Risken, The Fokker-Planck Equation: Method of Solution and Application (Springer-Verlag, Berlin, 1989) Google Scholar
  12. 12.
    Y. Xu, W. Xu, G.M. Mahmoud. Chaos Soliton. Fract. 35, 126 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer-Verlag, New York, 2000) Google Scholar
  14. 14.
    H.S. Chen, C.S. Shen, H.F. Zhang, J. Kurths, Chaos 27, 081102 (2017) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.A. Mohamad, W. Cousins, T.P. Sapsis, J. Comput. Phys. 322, 288 (2016) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Y.G. Li, Y. Xu, J. Kurths, X.L. Yue, Chaos 27, 103102 (2017) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Xu, W. Xu, G.M. Mahmoud, Physica A 336, 347 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    M. Estecahandy, L. Bordes, S. Collas, C. Paroissin, Reliab. Eng. Syst. Saf. 144, 296 (2015) CrossRefGoogle Scholar
  19. 19.
    Y.G. Li, Y. Xu, J. Kurths, Phys. Rev. E 96, 052121 (2017) CrossRefGoogle Scholar
  20. 20.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, Inc, MA, 1996) Google Scholar
  21. 21.
    E.E. Borrero, F.A. Escobedo, J. Phys. Chem. B 113, 6434 (2009) CrossRefGoogle Scholar
  22. 22.
    R. Elber, J.M. Bellorivas, P. Ma, A.E. Cardenas, A. Fathizadeh, Entropy 19, 219 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    W.N. E, W.Q. Ren, E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688 (2005) CrossRefGoogle Scholar
  24. 24.
    I.H. Moskowitz, W.D. Seider, A.J. Patel, J.E. Arbogast, U.G. Oktem, Comput. Chem. Eng. 108, 74 (2017) CrossRefGoogle Scholar
  25. 25.
    D. Christoph, P.G. Bolhuis, P.L. Geissler, Adv. Chem. Phys. 123, 1585 (2005) Google Scholar
  26. 26.
    Y. Xu, W. Xu, G.M. Mahmoud, Chaos Soliton. Fract. 35, 126 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    R.J. Allen, C. Valeriani, P.R. ten Wolde, J. Phys.: Condens. Matter 21, 463102 (2009) Google Scholar
  29. 29.
    R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    E.E. Borrero, F.A. Escobedo, J. Chem. Phys. 129, 024115 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    H.S. Chen, C.S. Shen, H.F. Zhang, G. Li, Z.H. Hou, J. Kurths, Phys. Rev. E 95, 042304 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    A. Hajiakbari, P.G. Debenedetti, Proc. Natl. Acad. Sci. U.S.A. 114, 3316 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    E.E. Borrero, L.M.C. Martínez, M.P. Delisa, F.A. Escobedo, Biophys. J. 98, 1911 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    A. Vijaykumar, P.R. ten Wolde, P.G. Bolhuis, J. Chem. Phys. 148, 124109 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    V. Thapar, F.A. Escobedo, J. Chem. Phys. 143, 018104 (2015) CrossRefGoogle Scholar
  36. 36.
    C. Valeriani, R.J. Allen, M.J. Moreli, D. Frenkel, W.P. ten Rein, J. Chem. Phys. 127, 114109 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    D.J. Higham, SIAM Rev. 43, 525 (2001) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Y. Xu, R.C. Gu, H.Q. Zhang, W. Xu, J.Q. Duan, Phys. Rev. E 83, 056215 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    Y. Xu, J.Z. Ma, H.Y. Wang, Y.G. Li, J. Kurths, Eur. Phys. J. B 90, 194 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    B.W. Zhang, D. Jasnow, J. Chem. Phys. 126, 17970 (2007) Google Scholar
  41. 41.
    R.S. Maier, D.L. Stein, SIAM J. Appl. Math. 57, 752 (1997) MathSciNetCrossRefGoogle Scholar
  42. 42.
    G.E. Crooks, D. Chandler, Phys. Rev. E 64, 026109 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    J. Wang, L. Xu, E. Wang, Proc. Natl. Acad. Sci. U.S.A. 105, 12271 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua Li
    • 1
  • Yong Xu
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jürgen Kurths
    • 3
    • 4
  • Xiaole Yue
    • 1
  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical UniversityXi’anP.R. China
  3. 3.Department of PhysicsHumboldt University of BerlinBerlinGermany
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations