Advertisement

Real and imaginary energy gaps: a comparison between single excitation Superradiance and Superconductivity and robustness to disorder

  • Nahum C. Chávez
  • Francesco Mattiotti
  • J. A. Méndez-Bermúdez
  • Fausto BorgonoviEmail author
  • G. Luca Celardo
Regular Article
  • 30 Downloads
Part of the following topical collections:
  1. Topical issue: Recent Advances in the Theory of Disordered Systems

Abstract

A comparison between the single particle spectrum of the discrete Bardeen-Cooper-Schrieffer (BCS) model, used for small superconducting grains, and the spectrum of a paradigmatic model of Single Excitation Superradiance (SES) is presented. They are both characterized by an equally spaced energy spectrum (Picket Fence) where all the levels are coupled between each other by a constant coupling which is real for the BCS model and purely imaginary for the SES model. While the former corresponds to the discrete BCS-model describing the coupling of Cooper pairs in momentum space and it induces a Superconductive regime, the latter describes the coupling of single particle energy levels to a common decay channel and it induces a Superradiant transition. We show that the transition to a Superradiant regime can be connected to the emergence of an imaginary energy gap, similarly to the transition to a Superconductive regime where a real energy gap emerges. Despite their different physical origin, it is possible to show that both the Superradiant and the Superconducting gaps have the same magnitude in the large gap limit. Nevertheless, some differences appear: while the critical coupling at which the Superradiant gap appears is independent of the system size N, for the Superconductivity gap it scales as (ln N)−1, which is the expected BCS result. The presence of a gap in the imaginary energy axis between the Superradiant and the Subradiant states shares many similarities with the “standard” gap on the real energy axis: the superradiant state is protected against disorder from the imaginary gap as well as the superconducting ground state is protected by the real energy gap. Moreover we connect the origin of the gapped phase to the long-range nature of the coupling between the energy levels.

Graphical abstract

References

  1. 1.
    P.W. Anderson, Science 325, 1510 (1972) Google Scholar
  2. 2.
    E. Dagotto, Science 309, 257 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    A.F. van Loo, A. Fedorov, K. Lalumiere, B.C. Sanders, A. Blais, A. Wallraff, Science 432, 1494 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    E. Akkermans, A. Gero, R. Kaiser, Phys. Rev. Lett. 101, 103602 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    L. Santos, F. Borgonovi, G.L. Celardo, Phys. Rev. Lett. 116, 250402 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, Phys. Rev. Lett. 115, 187402 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J. Strumpfer, M. Sener, K. Schulten, J. Phys. Chem. Lett. 3, 536 (2012) CrossRefGoogle Scholar
  9. 9.
    G.L. Celardo, F. Borgonovi, M. Merkli, V.I. Tsifrinovich, G.P. Berman, J. Phys. Chem. C 116, 22105 (2012) CrossRefGoogle Scholar
  10. 10.
    K.D.B. Higgins, S.C. Benjamin, T.M. Stace, G.J. Milburn, B.W. Lovett, E.M. Gauger, Nat. Commun. 5, 4705 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    G.L. Celardo, P. Poli, L. Lussardi, F. Borgonovi, Phys. Rev. B 90, 085142 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    G.L. Celardo, G.G. Giusteri, F. Borgonovi, Phys. Rev. B 90, 075113 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    G.L. Celardo, A. Biella, L. Kaplan, F. Borgonovi, Fortschr. Phys. 61, 250 (2013) MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    U. Fano, Rev. Mod. Phys. 64, 313 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    F.T. Arecchi, R. Bonifacio, M.O. Scully (Eds.), in Coherence in Spectroscopy and Modern Physics, NATO Advanced Study Institutes Series (Series B: Physics) (Springer, Boston, MA, 1978), Vol. 37 Google Scholar
  17. 17.
    A. DiRienzo, D. Rogovin, M. Scully, R. Bonifacio, L. Lugiato, M. Milani, Superconductivity and Quantum Optics, in Coherence in Spectroscopy and Modern Physics, edited by F.T. Arecchi, R. Bonifacio, M.O. Scully, NATO Advanced Study Institutes Series (Series B: Physics) (Springer, Boston, MA, 1978), Vol. 37 Google Scholar
  18. 18.
    M.O. Scully, A.A. Svidzinsky, Science 325, 1510 (2009) CrossRefGoogle Scholar
  19. 19.
    W. Guerin, M.O. Araujo, R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    R. Monshouwer, M. Abrahamsson, F. Van Mourik, R. Van Grondelle, J. Phys. Chem. B 101, 7241 (1997) CrossRefGoogle Scholar
  21. 21.
    C. Jung, M. Müller, I. Rotter, Phys. Rev. E 60, 114 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Sokolov, V.G. Zelevinsky, Phys. Lett. B 202, 10 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    I. Rotter, Rep. Prog. Phys. 54, 635 (1991) ADSCrossRefGoogle Scholar
  24. 24.
    J. von Delft, Ann. Phys. 3, 219 (2001) CrossRefGoogle Scholar
  25. 25.
    A. Faribault, P. Calabrese, J.S. Caux, Phys. Rev. B 77, 064503 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Smith, V. Ambegaokar, Phys. Rev. Lett. 77, 24 (1996) CrossRefGoogle Scholar
  27. 27.
    M. Schechter, J. von Delft, Y. Imry, Y. Levinson, Phys. Rev. B 67, 064506 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    E.A. Yuzbashyan, A.A. Baytin, B.L. Altshuler, Phys. Rev. B 71, 094505 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    H.K. Owusu, K. Wagh, E.A. Yuzbashyan, J. Phys. A: Math. Theor. 42, 035206 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    E.A. Yuzbashyan, B.S. Shastry, J. Stat. Phys. 150, 704 (2013) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    L.N. Cooper, Phys. Rev. 104, 1189 (1956) ADSCrossRefGoogle Scholar
  32. 32.
    G.L. Celardo, V.G. Zelevinsky, F. Izrailev, G.P. Berman, Phys. Rev. E 76, 031119 (2007) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    G.L. Celardo, N. Auerbach, F.M. Izrailev, V.G. Zelevinsky, Phys. Rev. Lett. 106, 042501 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    S. Sorathia, F.M. Izrailev, G.L. Celardo, V.G. Zelevinsky, G.P. Berman, Europhys. Lett. 88, 27003 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    G.L. Celardo, F.M. Izrailev, V.G. Zelevinsky, G.P. Berman, Phys. Lett. B 659, 170 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    G.G. Giusteri, F. Recrosi, G. Schaller, G.L. Celardo, Phys. Rev. E 96, 012113 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    G.G. Giusteri, F. Mattiotti, G.L. Celardo, Phys. Rev. B 91, 094301 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    G.L. Celardo, R. Kaiser, F. Borgonovi, Phys. Rev. B 94, 144206 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    L.F. Santos, F. Borgonovi, G.L. Celardo, Phys. Rev. Lett. 116, 250402 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature (London) 511, 202 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Nature (London) 511, 198 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    J.R. Schrieffer, Theory of superconductivity (Westview Press, 1964) Google Scholar
  44. 44.
    G. De Gennes, in Superconductivity of Metals and Alloys (Addison-Wesley Publishing Company, 1966), p. 93 Google Scholar
  45. 45.
    G.A. Álvarez et al., J. Chem. Phys. 124, 194507 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    H.M. Pastawski, Physica B 398, 278 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    A.D. Dente, R.A. Bustos-Marún, H.M. Pastawski, Phys. Rev. A 78, 062116 (2008) ADSCrossRefGoogle Scholar
  48. 48.
    A. Ruderman et al., J. Phys.: Condens. Matter 27, 315501 (2015) Google Scholar
  49. 49.
    M. Gullì, A. Valzelli, F. Mattiotti, M. Angeli, F. Borgonovi, G.L. Celardo, New J. Phys. 21, 01301 (2019) CrossRefGoogle Scholar
  50. 50.
    J. Schachenmayer, C. Genes, E. Tignone, G. Pupillo, Phys. Rev. Lett. 114, 196403 (2015) ADSCrossRefGoogle Scholar
  51. 51.
    J. Feist, F.J. Garcia-Vidal, Phys. Rev. Lett. 114, 196402 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nahum C. Chávez
    • 1
  • Francesco Mattiotti
    • 2
    • 3
  • J. A. Méndez-Bermúdez
    • 1
  • Fausto Borgonovi
    • 2
    • 3
    Email author
  • G. Luca Celardo
    • 1
  1. 1.Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Instituto de FísicaMexicoMexico
  2. 2.Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università CattolicaBresciaItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di PaviaPaviaItaly

Personalised recommendations