Advertisement

Effects of spin–orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring

  • Vahid Ashrafi-Dalkhani
  • Sajad Ghajarpour-Nobandegani
  • Mohammad Javad KarimiEmail author
Regular Article
  • 18 Downloads

Abstract

In this work, the effects of the Rashba and Dresselhaus spin–orbit interactions, eccentricity and external electric and magnetic fields on the linear optical absorption in an elliptical quantum ring are studied. The electronic structure is determined using the finite element method, and the linear optical absorption coefficient is calculated by the density matrix approach. Results indicate that the spin–orbit interaction and magnetic field lead to the splitting and oscillatory behavior of the energy levels, respectively. The resonant peak of the linear optical absorption shifts to the higher energies with increasing eccentricity. The magnitude and position of the resonant peaks have non-monotonic behaviors with the external fields.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics (Elsevier Science, Amsterdam, 2008) Google Scholar
  2. 2.
    M.G. Barseghyan, C.A. Duque, E.C. Niculescu, A. Radu, Superlatt. Microstruct. 66, 10 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    G. Rezaei, M.J. Karimi, H. Pakarzadeh, J. Lumin. 143, 551 (2013) CrossRefGoogle Scholar
  4. 4.
    B. Cakir, U. Atav, Y. Yakar, A. Ozmen, Chem. Phys. 475, 61 (2016) CrossRefGoogle Scholar
  5. 5.
    D. Bejan, E.C. Niculescu, Eur. Phys. J. B 89, 138 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    K.I. Kolokolov, S.D. Beneslavski, N.Y. Minina, Phys. Rev. B 63, 195308 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    V.A. Kukushkin, JETP Lett. 89, 437 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    A. Majumdar, N. Manquest, A. Faraon, J. Vukovic, Opt. Express 18, 3974 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    S. Krishna, Infrared Phys. Technol. 47, 153 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    N. Vukmirovic, D. Indjin, Z. Ikonic, P. Harrison, Acta Phys. Pol. A 116, 464 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    S. Debald, B. Kramer, Phys. Rev. B 71, 115322 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Y.M. Liu, C.G. Bao, T.Y. Shi, Phys. Rev. B 73, 113313 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    A. Bruno-Alfonso, A. Latgé, Phys. Rev. B 71, 125312 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    E.C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, J. Appl. Phys. 122, 144301 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    A. Radu, A.A. Kirakosyan, D. Laroze, H.M. Baghramyan, M.G. Barseghyan, J. Appl. Phys. 116, 093101 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    T.V. Bandos, A. Cantarero, A. Garcia-Cristobal, Eur. Phys. J. B 53, 99 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    G.A. Farias, M.H. Degani, J.A.K. Freire, J.C. e Silva, R. Ferreira, Phys. Rev. B 77, 085316 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    L.I. Magarill, D.A. Romanov, A.V. Chaplik, J. Exp. Phys 83, 361 (1996) ADSGoogle Scholar
  20. 20.
    A. Bruno-Alfonso, A. Latgé, Phys. Rev. B 77, 205303 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    T. Chakraborty, A. Manaselyan, M. Barseghyan, D. Laroze, Phys. Rev. B 97, 041304 (2018) ADSCrossRefGoogle Scholar
  22. 22.
    J. Planelles, F. Rajadell, J.I. Climente, Nano Technol. 18, 375402 (2007) Google Scholar
  23. 23.
    S. Ghajarpour-Nobandegani, M.J. Karimi, Opt. Mater. 82, 75 (2018) ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Karimi, M. Hosseini, Superlatt. Microstruct. 111, 96 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    S. Pramanik, S. Bandyopadhyay, M. Cahay, Phys. Rev. B 68, 075313 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    X.F. Wang, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 65, 165217 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett 88, 126601 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Wolf, D.D. Awschalom, R.A. Buhman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    I. Žutić, F. Jaroslav, S. Das Sarma, Rev. Mod. Phys. 76.2, 323 (2004) Google Scholar
  30. 30.
    Y.F. Hao, Eur. Phys. J. B 85, 84 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Karaaslan, B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Superlatt. Microstruct. 93, 32 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    S. Lahon, M. Kumar, P. Kumar-Jha, M. Mohan, J. Lumin. 144, 149 (2013) CrossRefGoogle Scholar
  33. 33.
    M. Kumar, S. Gumber, S. Lahon, P.K. Jha, M. Mohan, Eur. Phys. J. B 87, 71 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    A. Ghafari, B. Vaseghi, G. Rezaei, S.F. Taghizadeh, M.J. Karimi, Superlatt. Microstruct. 101, 397 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    M. Akbari, G. Rezaei, R. Khordad, Superlatt. Microstruct. 101, 429 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    B. Vaseghi, G. Rezaei, M. Malian, Opt. Commun. 287, 241 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    V.N. Mughnetsyan, A.K. Manaselyan, M.G. Barseghyan, A.A. Kirakosyan, J. Lumin. 134, 24 (2013) CrossRefGoogle Scholar
  38. 38.
    E. Pourmand, G. Rezaei, Physica B 543, 27 (2018) ADSCrossRefGoogle Scholar
  39. 39.
    P. Mokhtari, G. Rezaei, A. Zamani, Superlatt. Microstruct. 106, 1 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    A. Manaselyan, A. Ghazaryan, T. Chakraborty, Solid State Commun. 181, 34 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vahid Ashrafi-Dalkhani
    • 1
  • Sajad Ghajarpour-Nobandegani
    • 1
  • Mohammad Javad Karimi
    • 1
    Email author
  1. 1.Department of PhysicsShiraz University of TechnologyShirazIran

Personalised recommendations