Advertisement

Origin of stabilization of macrotwin boundaries in martensites

  • Og̃uz Umut SalmanEmail author
  • Benson Muite
  • Alphonse Finel
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Topical issue: Complex Systems Science meets Matter and Materials

Abstract

The origin of stabilization of complex microstructures along macrotwin boundaries in martensites is explained by comparing two models based on Ginzburg-Landau theory. The first model incorporates a geometrically nonlinear strain tensor to ensure that the Landau energy is invariant under rigid body rotations, while the second model uses a linearized strain tensor under the assumption that deformations and rotations are small. We show that the approximation in the second model does not always hold for martensites and that the experimental observations along macrotwin boundaries can only be reproduced by the geometrically nonlinear (exact) theory.

Graphical abstract

References

  1. 1.
    K. Bhattacharya, Microstructure of Martensite: why it Forms and How it Gives Rise to the Shape-Memory Effect (Oxford University Press, 2003) Google Scholar
  2. 2.
    O.U. Salman, A. Finel, R. Delville, D. Schryvers, J. Appl. Phys. 111, 10 (2012) CrossRefGoogle Scholar
  3. 3.
    S. Antman, Nonlinear Problems of Elasticity (Springer, New York, 2005) Google Scholar
  4. 4.
    S. Demoulini, Arch. Ratl. Mech. Anal. 155, 299 (2000) MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Dolzmann, S. Müller, Arch. Ratl. Mech. Anal. 132, 101 (1995) CrossRefGoogle Scholar
  6. 6.
    G. Dolzmann, S. Müller, Meccanica 30, 527 (1995) MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Landau, E. Lifshitz, Theory of Elasticity: Course of Theoretical Physics (Butterworth-, 1984) Google Scholar
  8. 8.
    W. Kerr, M. Killough, A. Saxena, P. Swart, A. Bishop, Phase Trans. 69, 247 (1999) CrossRefGoogle Scholar
  9. 9.
    A. Artemev, Y. Jin, A. Khachaturyan, Acta Mater. 49, 1165 (2001) CrossRefGoogle Scholar
  10. 10.
    Y.U. Wang, Y.M. Jin, A.G. Khachaturyan, Acta Mater. 52, 1039 (2004) CrossRefGoogle Scholar
  11. 11.
    S. Cunroe, A. Jacobs, Phys. Rev. B 64, 064101 (2001) ADSGoogle Scholar
  12. 12.
    T. Lookman, S. Shenoy, K. Rasmussen, A. Saxena, A. Bishop, Phys. Rev. B 67, 024114 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    R. Ahluwalia, T. Lookman, A. Saxena, Acta Mater. 54, 2109 (2006) CrossRefGoogle Scholar
  14. 14.
    O. Salman, Modeling of spatio-temporal dynamics and patterning mechanisms of martensites by phase-field and Lagrangian dynamics methods (Université de Pierre et Marie Curie, 2009) Google Scholar
  15. 15.
    B.K. Muite, O.U. Salman, Eur. Symp. Mart. Trans. 2009, 03008 (2009) Google Scholar
  16. 16.
    J. Schryvers, P. Boullay, P. Potapov, R. Kohn, J. Ball, Int. J. Solids Struct. 39, 3543 (2002) CrossRefGoogle Scholar
  17. 17.
    P. Boullay, D. Schryvers, R.V. Kohn, Phys. Rev. B 64, 144105 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    D. Schryvers, P. Boullay, R. Kohn, J. Ball, J. Phys. IV 11, 23 (2001) Google Scholar
  19. 19.
    A. Finel, Y. Le Bouar, A. Gaubert, O.U. Salman, C.R. Physique 11, 245 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    B. Muite, Analysis, modeling and simulation of shape memory alloys (Oxford University, 2009) Google Scholar
  21. 21.
    R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems (SIAM, 2007) Google Scholar
  22. 22.
    T. Davenport, L. Zhou, J. Trivisonno, Phys. Rev. B 59, 3421 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    A. Jacobs, Phys. Rev. B. 61, 6587 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    V. Levitas, D.W. Lee, Phys. Rev. Lett. 99, 245701 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Levitas, A.M. Roy, Phys. Rev. B 91, 174109 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Og̃uz Umut Salman
    • 1
    • 2
    Email author
  • Benson Muite
    • 3
  • Alphonse Finel
    • 1
  1. 1.Laboratoire d’Etude des Microstructures, ONERA, CNRS, BP 72ChâtillonFrance
  2. 2.CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  3. 3.M Arvutiteaduse instituut Tartu Ülikool J.Liivi 2TartuEstonia

Personalised recommendations