Advertisement

Good influence transmission structure strengthens cooperation in prisoner’s dilemma games

  • Penghui Liu
  • Jing LiuEmail author
Regular Article
  • 62 Downloads

Abstract

Analysis on how network reciprocity may help promote the coordination of agents in a system has attracted attention. However, designing effective methods for searching highly cooperative population structures remains a challenge. In this article, we reveal how cooperation behavior survives and spreads from a micro perspective, and further visualize the topology of influence transmission structure that supports the spread of cooperation. Based on our analysis, a highly cooperative multilevel scale-free network (mlSFNs) model is designed and compared with other existing scale-free network models. Meanwhile, we discover the positive correlation between influence coverage rate and cooperation level from a correlation analysis toward mass sample data. Thus, we introduce one rule for highly cooperative structures: influence coverage rate is essential to cooperation, while the unaffected nodes should be less influential. In our experiments, we find that this rule can provide effective guidance to the structure optimization algorithm termed fMA-CPD-SFN, which successfully optimizes various structures subject to different strategy update rules. Moreover, fMA-CPD-SFN is also applicable to the optimization of large-scale populations. In this case, we conclude that this rule is instructive for future design of a highly cooperative population structure.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, J. Wang, https://doi.org/arXiv:1703.10069 (2017)
  2. 2.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    R. Chiong, M. Kirley, IEEE Trans. Evol. Comput. 16, 537 (2012) CrossRefGoogle Scholar
  4. 4.
    J. Li, G. Kendall, IEEE Trans. Evol. Comput. 18, 819 (2014) CrossRefGoogle Scholar
  5. 5.
    C. Wedekind, M. Milinski, Science 288, 850 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    E. Fehr, U. Fischbacher, Nature 425, 785 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Nowak, K. Sigmund, Nature 437, 1291 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Nowak, Science 314, 1560 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    X. Chen, F. Fu, L. Wang, Physica A 378, 512 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li, J. Zhang, M. Perc, Appl. Math. Comput. 320, 437 (2018) MathSciNetGoogle Scholar
  11. 11.
    A. Szolnoki, M. Perc, New J. Phys. 20, 013031 (2018) ADSCrossRefGoogle Scholar
  12. 12.
    E. Lieberman, C. Hauert, M.A. Nowak, Nature 433, 312 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    B. Allen, M.A. Nowak, EMS Surv. Math. Sci. 1, 113 (2014) Google Scholar
  15. 15.
    F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Proc. R. Soc. Lond B 273, 51 (2006) CrossRefGoogle Scholar
  16. 16.
    C. Hauert, M. Doebeli, Nature 428, 643 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    F.C. Santos, M.D. Santos, J.M. Pacheco, Nature 454, 213 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 2008 ADSCrossRefGoogle Scholar
  21. 21.
    L. Luthi, E. Pestelacci, M. Tomassini, Physica A 387, 955 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    A. Szolnoki, M. Perc, EPL 113, 58004 (2016) Google Scholar
  23. 23.
    A. Szolnoki, M. Perc, Sci. Rep. 6, 23633 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 78, 066101 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    Z. Wang, A. Szolnoki, M. Perc, EPL 97, 48001 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 124 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    D.Y. Kenett, M. Perc, S. Boccaletti, Chaos Solitons Fractals 80, 1 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    S. György, F. Gábor, Phys. Rep. 446, 97 (2007) MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Xia, X. Li, Z. Wang, M. Perc, New J. Phys. 20, 075005 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Zimmermann, V.M. Eguíluz, M.S. Miguel, Economics with Heterogeneous Interacting Agents, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 2001) Google Scholar
  32. 32.
    A. Szolnoki, M. Perc, EPL 86, 30007 2009 ADSCrossRefGoogle Scholar
  33. 33.
    A. Szolnoki, M. Perc, New J. Phys. 11, 093033 2009 ADSCrossRefGoogle Scholar
  34. 34.
    A. Szolnoki, M. Perc, Z. Danku, Europhys. Lett. 84, 88 (2008) CrossRefGoogle Scholar
  35. 35.
    J.M. Pacheco, A. Traulsen, M.A. Nowak, J. Theor. Biol. 243, 437 (2006) CrossRefGoogle Scholar
  36. 36.
    J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    M. Perc, A. Szolnoki, Biosystems 99, 109 (2010) CrossRefGoogle Scholar
  38. 38.
    C. Shen, C. Chu, L. Shi, M. Perc, Z. Wang, R. Soc. Open Sci. 5, 180199 2018 CrossRefGoogle Scholar
  39. 39.
    B. Allen, G. Lippner, Y. Chen, B. Fotouhi, M.A. Nowak, S. Yau, Nature 544, 227 2017 ADSCrossRefGoogle Scholar
  40. 40.
    P. Liu, J. Liu, Sci. Rep. 7, 4320 2017 ADSCrossRefGoogle Scholar
  41. 41.
    M. Zhou, J. Liu, IEEE Trans. Cybern. 47, 539 2014 Google Scholar
  42. 42.
    Y. Chi, J. Liu, IEEE Trans. Fuzzy Syst. 24, 71 (2016) CrossRefGoogle Scholar
  43. 43.
    W. Zhong, J. Liu, M. Xue, L. Jiao, IEEE Trans. Syst. Man Cybern. B 34, 1128 (2004) ADSCrossRefGoogle Scholar
  44. 44.
    C. Liu, J. Liu, Z. Jiang, IEEE Trans. Cybern. 44, 2274 2014 Google Scholar
  45. 45.
    M. Zhou, J. Liu, Physica A 410, 131 (2014) ADSCrossRefGoogle Scholar
  46. 46.
    Y. Yuan, H. Xu, B. Wang, B. Zhang, X. Yao, IEEE Trans. Evol. Comput. 20, 180 (2016) CrossRefGoogle Scholar
  47. 47.
    X. Qiu, J.X. Xu, K.C. Tan, H.A. Abbass, IEEE Trans. Evol. Comput. 20, 232 (2016) CrossRefGoogle Scholar
  48. 48.
    J. He, G. Lin, IEEE Trans. Evol. Comput. 20, 316 (2015) CrossRefGoogle Scholar
  49. 49.
    W. Du, W. Ying, G. Yan, Y. Zhu, X. Cao, IEEE Trans. Circuits Syst. II Express Briefs 64, 467 (2017) CrossRefGoogle Scholar
  50. 50.
    W. Du, Y. Gao, C. Liu, Z. Zheng, Z. Wang, Appl. Math. Comput. 268, 832 (2015) MathSciNetGoogle Scholar
  51. 51.
    S. Assenza, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 017101 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    A. Yamauchi, J. Tanimoto, A. Hagishima, BioSystems 102, 82 (2010) CrossRefGoogle Scholar
  53. 53.
    A.L. Barabàsi, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian UniversityXi’anP.R. China

Personalised recommendations