Advertisement

Levy noise-driven stochastic resonance in a coupled monostable system

  • Lu LiuEmail author
  • Fuzhong Wang
  • Yunjiang Liu
Regular Article
  • 17 Downloads

Abstract

Treating the signal-to-noise ratio (SNR) as the signal quality index, the stochastic resonance (SR) phenomenon in a coupled monostable system (CMS), which is nonlinearly constructed from two monostable systems with a feedback factor and driven by Levy noise, is investigated. First, the construction principle of the coupled system is analysed, and the mechanism of SR is explained from the perspective of microscopic particle motion. Second, the method of parameter adjustment is detailed, and the variations in the system output SNR with changes in different parameters are analysed. Finally, multichannel signals are applied to the coupled system. The research results show that (1) the system parameter intervals remain unchanged with variations in the characteristic noise parameter α when the system outputs the optimal SNR for single-channel signals; (2) in extracting single-channel, three-channel and five-channel signals, the optimal interval of parameter r does not change; and (3) by adjusting the value of the system parameter a, the differences among the power spectrum values of the different channel signals can be reduced. The SR induced by the CMS is greater than that for a monostable system.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T. Wellens, V. Shatokin, A. Buchleitner, Rep. Prog. Phys. 67, 45 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    C. Nicolis, Tellus 34, 1 (1982) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Benzi, A. Srutera, A. Vulpiani, J. Phys. A 4, 453 (1981) CrossRefGoogle Scholar
  4. 4.
    G. Litak, E. Manoach, E. Halvorsen, Eur. Phys. J. Special Topics 224, 671 (2015) CrossRefGoogle Scholar
  5. 5.
    J.I. Pẽna Rossellò, J.I. Deza, H.S. Wio, R.R. Deza, Anales AFA 25, 54 (2014) CrossRefGoogle Scholar
  6. 6.
    H.S. Wio, S. Bouzat, B. von Haeften, Physica A 306, 140 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    J.I. Deza, R.R. Deza, H.S. Wio, Europhys. Lett. 100, 38001 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    B. Mcnamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989) ADSCrossRefGoogle Scholar
  10. 10.
    J. Fan, W.L. Zhao, M.L. Zhang, R.H. Tan, W.Q. Wang, Acta Phys. Sin. 63, 110506 (2014) Google Scholar
  11. 11.
    W.L. Zhao, J. Liu, Chin. J. Sci. Instrum. 32, 721 (2011) Google Scholar
  12. 12.
    Y.Y. Fan, L.P. Li, R.R. Dang, Chin. J. Sci. Instrum. 34, (2013) Google Scholar
  13. 13.
    J.J. Liu, Y.G. Leng, Z.H. Lai, D. Tan, Acta Phys. Sin. 65, 220501 (2016) Google Scholar
  14. 14.
    Y.G. Leng, T.Y. Wang, X.D. Tai, R.X. Li, G. Yan, Acta Phys. Sin. 53, 717 (2004) Google Scholar
  15. 15.
    P.R. Guo, H.Y. Wang, Optik 144, 436 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    P. Levy, Ann. Sc. Norm. Super Pisa 3, 337 (1934) Google Scholar
  17. 17.
    R. Weron, Stat. Probab. Lett. 28, 165 (1996) CrossRefGoogle Scholar
  18. 18.
    B. Dybiec, E. Gudowska-Nowak, Acta Phys. Pol. B 37, 1479 (2006) ADSGoogle Scholar
  19. 19.
    L.F. He, Y.Y. Cui, Chin. J. Sci. Instrum. 7, 1457 (2016) Google Scholar
  20. 20.
    G. Zhang, Y. Song, T.Q. Tian, T. Hu, Y.Y. Cui, Chin. J. Sci. Instrum. 37, 109 (2016) Google Scholar
  21. 21.
    S.B. Jiao, D. Sun, D. Liu, G. Xie, Y.L. Wu, Q. Zhang, Acta Phys. Sin. 66, 100501 (2017) Google Scholar
  22. 22.
    C.L. Liu, L. Shao, H.L. Chen, J.T. Wang, J. Harbin Univ. Sci. Technol. 19, 51 (2014) Google Scholar
  23. 23.
    M. Lin, Y.M. Huang, L.M. Fang, Acta Phys. Sin. 57, 2048 (2008) Google Scholar
  24. 24.
    J.I.P. Rosselló, H.S. Wio, R.R. Deza, P. Hänggi, Eur. Phys. J. B 90, 34 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    H.S. Wio, J.A. Revelli, M.A. Rodríguez, R.R. Deza, G.G. Izús, Eur. Phys. J. B 69, 71 (2009) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N.G. Stocks, N.D. Stein, S.M. Soskin, P.V.E. Mcclintock, Physica A 25, 1119 (1992) Google Scholar
  27. 27.
    N.G. Stocks, N.D. Stein, P.V.E. Mcclintock, Physica A 26, 385 (1993) Google Scholar
  28. 28.
    J.M.G. Vilar, J.M. Rubí, Phys. Rev. Lett. 77, 2863 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    J.M.G. Vilar, J.M. Rubí, Phys. Rev. Lett. 78, 2886 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    Y.G. Leng, Y. Zhao, Acta Phys. Sin. 64, 0210503 (2015) Google Scholar
  31. 31.
    Y. Xu, J.J. Li, F. Jing, H.Q. Zhang, W. Xu, J.Q. Duan, Eur. Phys. J. B 86, 198 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    Y. Lei, Z. Qiao, X. Xu, J. Lin, S. Niu, Mech. Syst. Signal Process. 94, 148 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 45 (2008) Google Scholar
  34. 34.
    M.C. Gimenez. Eur. Phys. J. B 89, 83 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    A.K. Dhara, Physica D 303, 1 (2015) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Mino, D.M. Durand, Biol. Cybern. 103, 227 (2010) CrossRefGoogle Scholar
  37. 37.
    C.U. Mba, S. Marchesiello, A. Fasana, L. Garibaldi, Cham 9, 55 (2018) Google Scholar
  38. 38.
    Z. Gingl, P. Makra, Am. Inst. Phys. 665, 100 (2003) Google Scholar
  39. 39.
    I. Goychuk, P. Hänggi, Phys. Rev. E 61, 4272 (2000) ADSCrossRefGoogle Scholar
  40. 40.
    D.Q. Yan, F.Z. Wang, S. Wang, Mod. Phys. Lett. 31, 1850069 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    K. Lu, F.Z. Wang, G.L. Zhang, W.H. Fu, Chin. Phys. B 22, 120202 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Science, Tianjin Polytechnic UniversityTianjinP.R. China

Personalised recommendations