Advertisement

Temperature tunable Anderson localization for graphene surface plasmons

  • Abbas Ghasempour Ardakani
  • Marzieh Sedaghat Nejad
Regular Article
  • 13 Downloads

Abstract

In this paper, we propose a one-dimensional disordered plasmonic structure composed of a graphene single layer placed on a random grating composed of InAs. The propagation of a plasmonic wave through this structure is investigated numerically. By calculation of normalized localization length for systems with different disorder strengths, it is determined whether or not the system is in the localized regime. For some frequencies, depending on the disorder level, Anderson localization occurs for plasmonic waves propagating through the graphene layer. Furthermore, the effect of optical loss on the localization length is studied. By calculating the localization length at different temperatures, it is observed that Anderson localization of graphene plasmons is temperature dependent and can be controlled by changing the temperature. In the transmission spectrum for each random realization, there are some resonance peaks that are blueshifted with increasing the temperature. Finally, the effects of Fermi energy level of the graphene layer and width of air gaps on the individual transmission resonances are examined.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    G. Veronis, S. Fan, J. Lightw. Technol. 25, 2511 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    J. Tao et al., Opt. Express 17, 13989 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H. Lu et al., Opt. Express 19, 2910 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    A. Hosseini, H. Nejati, Y. Massoud, Opt. Express 16, 1475 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Lagendijk, B. van Tiggelen, D.S. Wiersma, Phys. Today 62, 24 (2009) CrossRefGoogle Scholar
  8. 8.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958) ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Weaver, Wave Motion 12, 129 (1990) CrossRefGoogle Scholar
  10. 10.
    J. Billy, V. Josse, Z.C. Zuo, A. Bernard, B. Hambrecht et al., Nature 453, 891 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    R. Dalichaouch, J.P. Armstrong, S. Schultz, P.M. Platzman, S.L. McCall, Nature 354, 53 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Nature 390, 671 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    S. Grésillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin et al., Phys. Rev. Lett. 82, 4520 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    J. Topolancik, B. Ilic, F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti et al., Phys. Rev. Lett. 100, 013906 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    U. Naether, Y.V. Kartashov, V.A. Vysloukh, S. Nolte, A. Tünnermann et al., Opt. Lett. 37, 593 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    P.D. García, S. Smolka, S. Stobbe, P. Lodahl, Phys. Rev. B 82, 165103 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    T. Strudley, T. Zehender, C. Blejean, E.P.A.M. Bakkers, O.L. Muskens, Nat. Photonics 7, 413 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    A.R. McGurn, A.A. Maradudin, V. Celli, Phys. Rev. B 31, 4866 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    K. Arya, Z.B. Su, J.L. Birman, Phys. Rev. Lett. 54, 1559 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    F. Pincemin, G. Jean-Jacques, J. Opt. Soc. Am. B 13, 1499 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    X. Shi, X. Chen, B.A. Malomed, N.C. Panoiu, F. Ye, Phys. Rev. B 89, 195428 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Maradudin, I. Simonsen, T.A. Leskova, E.R. Méndez, Physica B 296, 85 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    Q. Bao, K. Ping Loh, ACS Nano 6, 3677 (2012) CrossRefGoogle Scholar
  25. 25.
    J. Christensen et al., ACS Nano 6, 431 (2011) CrossRefGoogle Scholar
  26. 26.
    W.B., Lu et al., Opt. Express 21, 10475 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    A. Yu Nikitin et al., Phys. Rev. B 84, 161407 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Andersen, J. Opt. Soc. Am. B 27, 818 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    D. Correas-Serrano et al., IEEE Trans. Nanotechnol. 13, 1145 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Fang et al., Nano Lett. 12, 3808 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    L. Wu et al., Opt. Express 18, 14395 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    J.-Q. Liu et al., Opt. Express 16, 4888 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    A. Hosseini, H. Nejati, Y. Massoud, Opt. Express 16, 1475 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    J. Tao et al., Opt. Lett. 39, 271 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    X. Luo et al., Plasmonics 10, 1427 (2015) CrossRefGoogle Scholar
  36. 36.
    H. Zhuang et al., Jpn. J. Appl. Phys. 54, 095101 (2015) ADSCrossRefGoogle Scholar
  37. 37.
    B. Shi et al., Sci. Rep. 6, 1 (2016) CrossRefGoogle Scholar
  38. 38.
    H.-J. Li et al., J. Appl. Phys. 116, 224505 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, S. Jian, Plasmonics 11, 291 (2016) CrossRefGoogle Scholar
  40. 40.
    A.G. Ardakani, M. Sedaghatnejad, Appl. Opt. 56, 7243 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    M. Sani, M. Hosseini Farzad, Phys. Rev. B 97, 085406 (2018) ADSCrossRefGoogle Scholar
  42. 42.
    J. Li, J.Tao, Z.H. Chen, X.G. Huang, Opt. Express 24, 22169 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    K.J.A. Ooi, L.K. Ang, D.T.H. Tan, Appl. Phys. Lett. 105, 111110 (2014) ADSCrossRefGoogle Scholar
  44. 44.
    M.B. Lundeberg, Y. Gao, R. Asgari, C. Tan, B.V. Duppen, M. Autore, P. Alonso-González et al., Science 357, 187 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    B. Wunsch, T. Stauber, F. Sols, F. Guinea, New J. Phys. 8, 318 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    Yu V. Bludov et al., Int. J. Mod. Phys. B 27, 1341001 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    O. Madelung, Semiconductors: Group IV Elements and III–V Compounds (Springer Science+Business Media, 2012) Google Scholar
  48. 48.
    H.J. Joyce, C.J. Docherty, Q. Gao, H. Hoe Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, M.B. Johnston, Nanotechnology 24, 214006 (2013) ADSCrossRefGoogle Scholar
  49. 49.
    T.M. Jordan, J.C. Partridge, N.W. Roberts, Phys. Rev. B 88, 041105 (2013) ADSCrossRefGoogle Scholar
  50. 50.
    X. Wang et al., Sci. Rep. 6, 1 (2016) CrossRefGoogle Scholar
  51. 51.
    K.Y. Bliokh, P. Bliokh, V. Freilikher, A.Z. Genack, B. Hu, P. Sebbah, Phys. Rev. Lett. 97, 243904 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Savel’ev, F. Nori, Rev. Mod. Phys. 80, 1201 (2008) ADSCrossRefGoogle Scholar
  53. 53.
    I.V. Shadrivov, K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, Y.S. Kivshar, Phys. Rev. Lett. 104, 123902 (2010) ADSCrossRefGoogle Scholar
  54. 54.
    K.Y. Bliokh, S.A. Gredeskul, P. Rajan, I.V. Shadrivov, Y.S. Kivshar, Phys. Rev. B, 85, 014205 (2012) ADSCrossRefGoogle Scholar
  55. 55.
    F. Rüting, P.A. Huidobro, F.J. García-Vidal, Opt. Lett. 36 4341 (2011) ADSCrossRefGoogle Scholar
  56. 56.
    Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, F. Javier Garcina de Abajo, ACS Nano 7, 2388 (2013) CrossRefGoogle Scholar
  57. 57.
    X. Gan, R.J. Shiue, Y. Gao, K.F. Mak, X. Yao, L. Li, A. Szep, D.W., Jr, J. Hone, T.F. Heinz, D. Englund, Nano Lett. 13, 691 (2013) ADSCrossRefGoogle Scholar
  58. 58.
    Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Nano Lett. 14, 299 (2013) ADSCrossRefGoogle Scholar
  59. 59.
    M. Xiaochang, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, Nano Lett. 12, 2745 (2012) ADSCrossRefGoogle Scholar
  60. 60.
    D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, ISRN Condens. Matter Phys. 2012, 501686 (2012) CrossRefGoogle Scholar
  61. 61.
    J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008) CrossRefGoogle Scholar
  62. 62.
    Y. Yin, Z. Cheng, L. Wang, K. Jin, W. Wang, Sci. Rep. 4, 5758 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abbas Ghasempour Ardakani
    • 1
  • Marzieh Sedaghat Nejad
    • 1
  1. 1.Department of PhysicsShiraz UniversityShirazIran

Personalised recommendations