Advertisement

Stability of lauric acid at high pressure studied by Raman spectroscopy and picosecond acoustics

  • Sayed Mohamed Baqer Albahrani
  • Guilhem SimonEmail author
  • Simon Ayrinhac
  • Michel Gauthier
  • Frederic Decremps
  • Isabelle Lisiecki
  • Salvatore Constanzo
  • Philippe Colomban
Regular Article

Abstract

Lauric acid is commonly used as a coating agent which efficiently protects against oxidation and/or coalescence a set of inorganic nanocrystals obtained by chemical process. Its stability under pressure is likely to be informative on the stability and ordering of compressed supercrystals of nanocrystals. Therefore the elastic behaviour of lauric acid submitted to high pressures up to 25 GPa is studied. This elastic behavior has been probed by two complementary in situ techniques at high pressure: Raman spectroscopy and picosecond acoustics. Comparison between pressure-induced transformations as observed with the two techniques suggests that the lauric acid remains elastically stable above 2 GPa up to 25 GPa.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 7, 527 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Phys. Rep. 549, 1 (2015) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Volz, J. Ordonez-Miranda, A. Shchepetov, M. Prunnila, J. Ahopelto, T. Pezeril, G. Vaudel, V. Gusev, P. Ruello, E.M. Weig, M. Schubert, M. Hettich, M. Grossman, T. Dekorsy, F. Alzina, B. Graczykowski, E. Chavez-Angel, J. Sebastian Reparaz, M.R. Wagner, C.M. Sotomayor-Torres, S. Xiong, S. Neogi, D. Donadio, Eur. Phys. J. B 89, 15 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    I. Lisiecki, D. Polli, C. Yan, G. Soavi, E. Duval, G. Cerullo, M.-P. Pileni, Nano Lett. 13, 4914 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    A. Courty, A. Mermet, P.A. Albouy, E. Duval, M.P. Pileni, Nat. Mater. 4, 395 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    A.-H. Lu, E. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007) CrossRefGoogle Scholar
  8. 8.
    Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 5, 15 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, J. Mater. Chem. 21, 16819 (2011) CrossRefGoogle Scholar
  10. 10.
    M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220 (2016) CrossRefGoogle Scholar
  11. 11.
    I. Lisiecki, M.P. Pileni, Langmuir 19, 9486 (2003) CrossRefGoogle Scholar
  12. 12.
    S. Costanzo, G. Simon, J. Richardi, Ph. Colomban, I. Lisiecki, J. Phys. Chem. C 120, 22054 (2016) CrossRefGoogle Scholar
  13. 13.
    I. Lisiecki, S. Turner, S. Bals, M.P. Pileni, G. Van Tendeloo, Chem. Mater. 21, 2335 (2009) CrossRefGoogle Scholar
  14. 14.
    Z. Quan, Y. Wang, I.-T. Bae, W.S. Loc, C. Wang, Z. Wang, J. Fang, Nano Lett. 11, 5531 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Yoo, H. Cynn, P. Söderlind, V. Iota, Phys. Rev. Lett. 84, 4132 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    L.F. Cabeza, A. Castell, C.D. Barreneche, A. De Gracia, A.I. Fernández, Renew. Sustain. Energy Rev. 15, 1675 (2011) CrossRefGoogle Scholar
  17. 17.
    S. Ayrinhac, M. Gauthier, G. Le Marchand, M. Morand, F. Bergame, F. Decremps, J. Phys.: Condens. Matter 27, 275103 (2015) ADSGoogle Scholar
  18. 18.
    Y. Wada, S. Simbo, M. Oda, J. Phys. Soc. Jpn. 5, 345 (1950) ADSCrossRefGoogle Scholar
  19. 19.
    A. Dorinson, M.R. McCorkle, A.W. Ralston, J. Am. Chem. Soc. 64, 2739 (1942) CrossRefGoogle Scholar
  20. 20.
    D.J. McClements, M.J.W. Povey, Ultrasonics 30, 383 (1992) CrossRefGoogle Scholar
  21. 21.
    F.F. De Sousa, G.D. Saraiva, P.T.C. Freire, J.A. Lima, P. Alcantara, F.E.A. Melo, J. Mendes Filho, J. Raman Spectr. 43, 146 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    F. Ya, Z. Jing, L. Shuang, G. Fu-Ying, X. Da-Peng, Chin. Phys. Lett. 28, 110702 (2011) CrossRefGoogle Scholar
  23. 23.
    F. Ya, Z. Jing, X. Da-Peng, Spectrochim. Acta A 129, 143 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Chervin, B. Canny, M. Mancinelli, Int. J. High Pressure Res. 21, 305 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986) ADSCrossRefGoogle Scholar
  26. 26.
    S. Ayrinhac, M. Gauthier, L.E. Bove, M. Morand, G. Le Marchand, F. Bergame, J. Philippe, F. Decremps, J. Chem. Phys. 140, 244201 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    H.-N. Lin, R.J. Stoner, H.J. Maris, J. Tauc, J. Appl. Phys. 69, 3816 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    V.E. Gusev, P. Ruello, Appl. Phys. Rev. 5, 031101 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    M. Khafizov, J. Pakarinen, L. He, H.B. Henderson, M.V. Manuel, A.T. Nelson, B.J. Jaques, D.P. Butt, D.H. Hurley, Acta Mater. 112, 209 (2016) CrossRefGoogle Scholar
  30. 30.
    A.F. Goncharov, M. Gauthier, D. Antonangeli, S. Ayrinhac, F. Decremps, M. Morand, A. Grechnev, S.M. Tretyak, Y.A. Freiman, Phys. Rev. B 95, 214104 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    S. Klotz, J.-C. Chervin, P. Munsch, G. Le Marchand, J. Phys. D: Appl. Phys. 42, 075413 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    C.A. Miles, G.A.J. Fursey, R.C.D. Jones, J. Sci. Food Agric. 36, 215 (1985) CrossRefGoogle Scholar
  33. 33.
    H. Mehling, L.F. Cabeza, Heat and Mass Transfer (Springer Berlin, Heidelberg, 2008) Google Scholar
  34. 34.
    C. Vogel-Weill, J. Corset, Spectrochim. Acta A 51, 2357 (1995) ADSCrossRefGoogle Scholar
  35. 35.
    C. Vogel-Weill, A. Gruger, Spectrochim. Acta A 52, 1297 (1996) ADSCrossRefGoogle Scholar
  36. 36.
    C. Vogel-Weill, A. Gruger, Spectrochim. Acta A 52, 1737 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    F.F. de Sousa, P.T.C. Freire, G.D. Saraiva, J.A. Lima, P. Alcantara, F.E.A. Melo, J. Mendes Filho, Vibrat. Spectr. 54, 118 (2010) CrossRefGoogle Scholar
  38. 38.
    D.R. Lide et al., in CRC Handbook of Chemistry and Physics, 84th edn. edited by D.R. Lide (CRC Press, Boca Raton, Florida, 2003–2004) Google Scholar
  39. 39.
    J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, 2000) Google Scholar
  40. 40.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sayed Mohamed Baqer Albahrani
    • 1
    • 2
  • Guilhem Simon
    • 1
    • 2
    Email author
  • Simon Ayrinhac
    • 1
    • 2
  • Michel Gauthier
    • 1
    • 2
  • Frederic Decremps
    • 1
    • 2
  • Isabelle Lisiecki
    • 1
    • 2
  • Salvatore Constanzo
    • 1
    • 2
  • Philippe Colomban
    • 1
    • 2
  1. 1.Sorbonne Université, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMCParisFrance
  2. 2.Sorbonne Université, CNRS, Molécules Nanomatériaux, Interactions, Réactivité et Spectroscopies, MONARISParisFrance

Personalised recommendations