Advertisement

The modified van der Waals equation of state

Part IV: Crystalline materials
  • Jacques RaultEmail author
Article
  • 40 Downloads

Abstract

PVT data of crystallizable materials (CM), minerals, alkali, alkali halides, metals, mineral oxides and hydroxides, rare gas, water, organic compounds and polymers, published in the literature are reanalyzed. It is shown that all these materials under pressure verify the modified van der Waals equation of state (mVW-EOS), discussed recently [J. Rault, Eur. Phys. J. E 40, 82 (2017)]. The characteristic parameters P*V* of this EOS depend only on the nature of the material and not on its state (liquid, glassy, solid of different structure) and whatever are its conductivity and magnetic properties (insulator, conductor, superconductor, paramagnetic, ferromagnetic). This EOS explains the following properties: (a) the fan structure of the isobars V(T), and of the tangents to the isotherms V(P); (b) the superposition principle of the isotherms V(P); (c) the αB rule: the constancy of the thermal pressure coefficient (dP/dT)V = αB, product of the thermal expansion coefficient α and the bulk modulus B; (d) its relation with the Slater conjecture: (dP/dT)V ~ dP/dTm in crystallized materials, Tm being the melting temperature. The characteristic pressure P* (T and V independent) is compared with the various pressures: (i) Pcoh = Ecoh/V, the cohesive energy density; (ii) PLm = Lm/ΔVm, Lm and ΔVm being the enthalpy and volume jumps at the melting, respectively; (iii) PD = ΔHa/DVa, ratio of the activation parameters of the autodiffusion coefficient; (iv) PX = XX′, X being the bulk modulus B, shear modulus G, elastic constants Cij, and the yield stress σy of the CM, X′ their pressure derivative (at ambient conditions). All the elastic constants B, G, Cij and the yield stress σy are linear functions of P at low pressure (P < P*) and extrapolate to zero at the same negative pressure − PX = −P*. (e) P = Bγ* ratio of the bulk modulus B and Grüneisen parameter γ* at zero pressure. (f) PΔVm is the pressure deduced from the linear relation between the volume jump ΔVm(P) at the transition (melting or crystalline transition) and the pressure. The universal relation P* = Pcoh = PLm = PD = PB = PG = PCij = Pσy = PΔVm is observed and discussed. In molecular compounds such as H2O, H2, and polymers with different intra- and intermolecular interactions, the compression involves two different processes, at low and high pressures, verifying the mVW-EOS with characteristic pressures P1* and P2*. The ratio of these pressures is about the ratio of the weak intermolecular and strong intramolecular bond energies. The generalized modified equation of state (gmVW-EOS) describes the two-step process of compression in materials having two (or several) types of bonds.

Keywords

Solid State and Materials 

References

  1. 1.
    P.W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71 (1948) CrossRefGoogle Scholar
  2. 2.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944) ADSCrossRefGoogle Scholar
  3. 3.
    F.D. Murnaghan, Proc. Symp. Appl. Math. 1, 158 (1949) CrossRefGoogle Scholar
  4. 4.
    A.T.J. Hayward, Brit. J. Appl. Phys. 18, 965 (1967) ADSCrossRefGoogle Scholar
  5. 5.
    O.L. Anderson, Equation of State for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995) Google Scholar
  6. 6.
    J. Ross Macdonald, Rev. Mod. Phys. 41, 316 (1969) CrossRefGoogle Scholar
  7. 7.
    J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, Cambridge, 1991) Google Scholar
  8. 8.
    S. Gaurav, B.S. Sharma, S.B. Sharma, S.C. Upadhyaya, Physica B 322, 328 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    F.D. Stacey, Rep. Prog. Phys. 68, 341 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    J.X. Sun, L.C. Cai, Q. Wu, K. Jin, Phys. Scr. 88, 035005 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Rodgers, J. Appl. Polym. Sci. 48, 1061 (1993) Google Scholar
  12. 12.
    J. Rault, Eur. Phys. J. E 37, 113 (2014) CrossRefGoogle Scholar
  13. 13.
    J. Rault, Eur. Phys. J. E 38, 91 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    J. Rault, Eur. Phys. J. E 40, 82 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    M. Morita, V. Sobolev, M. Flad, J. Nucl. Mater. 362, 227 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    F.H. Fisher, O.E. Dial, Equation of State of Pure and Sea Water, Rep. SIO reference 75-28, 1975 Google Scholar
  17. 17.
    R. Spencer, G.D. Gilmor, J. Appl. Phys. A2, 1337 (1970) Google Scholar
  18. 18.
    J.H. Rose, J. Smith, F. Guinea, J. Ferrante, Phys. Rev. B29, 2963 (1984) ADSCrossRefGoogle Scholar
  19. 19.
    H. Schlosser J. Ferrante, Phys. Rev. B 40, 6405 (1989) ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Saxena, J. Phys. Chem. Solids 65, 1561 (2004) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S.V.G.J. Baonza, M. Caceres, J. Nünez, J. Phys. Chem. 97, 6120 (1993) CrossRefGoogle Scholar
  22. 22.
    S.V.G. Baonza, M. Caceres, J. Nünez, Phys. Rev. 51, 28 (1995) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    R.W. Haward, in The Physics of Glassy Polymers (Applied Science Publishers, London, 1973), Chap. 5 Google Scholar
  24. 24.
    J. Rault, J. Non-Cryst. Solids 235–237, 737 (1998) CrossRefADSGoogle Scholar
  25. 25.
    J.P. Romain, A. Migault, J. Jacquesson, J. Phys. Chem. Solids 37, 1159 (1976) ADSCrossRefGoogle Scholar
  26. 26.
    W.A. Spitzig, R.J. Sober, O. Richmond, Metal. Trans. 7A, 1703 (1976) CrossRefGoogle Scholar
  27. 27.
    Y. Adda, J. Philibert, La Diffusion dans les Solides (PUF, Paris, 1966) Google Scholar
  28. 28.
    J.P. Poirier, Geophys. J. 92, 99 (1988) ADSCrossRefGoogle Scholar
  29. 29.
    A. Rice, N.H. Nachtrieb, J. Chem. Phys. 31, 139 (1959) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Beyeler, D. lazarus, Z. Naturforsch. 26, 291 (1971) ADSGoogle Scholar
  31. 31.
    J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939) Google Scholar
  32. 32.
    Y. Hong, Chin. J., Met. Technol. 5, 119 (1989) Google Scholar
  33. 33.
    S.P. Clark, J. Chem. Phys. 31, 1526 (1959) ADSCrossRefGoogle Scholar
  34. 34.
    J.S. Dugdale, D.K. MacDonald, Phys. Rev. 89, 832 (1953) ADSCrossRefGoogle Scholar
  35. 35.
    L. Vocaldo, J.P. Poirier, G.D. Price, Am. Mineral. 85, 390 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    T.H.K Barron, Ann. Phys. 1, 77 (1957) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Wada, A. Itani, T. Nishi, J. Polym. Sci. A2, 201 (1969) Google Scholar
  38. 38.
    R.E. Barker, J. Appl. Phys. 38, 4234 (1967) ADSCrossRefGoogle Scholar
  39. 39.
    E.M. Brody, C.J. Lubell, C.L. Beatty, J. Polym. Sci. 13, 295 (1975) Google Scholar
  40. 40.
    B.K. Sharma, Polymer 24, 314 (1983) CrossRefGoogle Scholar
  41. 41.
    J.K. Kruger, K.P. Bohn, M. Pietralla, J. Schreiber, J. Phys. Cond. B8, 10863 (1996) ADSCrossRefGoogle Scholar
  42. 42.
    T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Kluwer Academic Plenum Publishers, New York, 1999) Google Scholar
  43. 43.
    A. Migault, J. Phys. 32, 437 (1971) CrossRefGoogle Scholar
  44. 44.
    F.D. Stacey, R.D. Irvine, Aust. J. Phys. 30, 631 (1977) ADSCrossRefGoogle Scholar
  45. 45.
    A.L. Kowarskii, High Pressure Chemistry and Physics of Polymer (CRC Press, Boca Raton, FL, 1994) Google Scholar
  46. 46.
    M.S. Anderson, C.A. Swenson, J. Phys. Chem. Solids 36, 145 (1975) ADSCrossRefGoogle Scholar
  47. 47.
    T. Yagi, J. Phys. Chem. Solids 39, 563 (1978) ADSCrossRefGoogle Scholar
  48. 48.
    N. Dass, M. Kumari, Phys. Status Solidi B 124, 531 (1984) ADSCrossRefGoogle Scholar
  49. 49.
    J. Shanker, M. Kumar, Phys. Status Solidi B 179, 351 (1993) ADSCrossRefGoogle Scholar
  50. 50.
    J.L. Tallon, J. Phys. Chem. Sol. 41, 837 (1980) ADSCrossRefGoogle Scholar
  51. 51.
    J.L. Tallon, W.H. Robinson, S.I. Smedley, Philos. Mag. 36, 741 (1977) ADSCrossRefGoogle Scholar
  52. 52.
    I.C. Sanchez, J. Cho, W.J. Chen, Macromolecules 26, 4234 (1993) ADSCrossRefGoogle Scholar
  53. 53.
    C.A. Swenson, J. Phys. Chem. Solids 27, 33 (1966) ADSCrossRefGoogle Scholar
  54. 54.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 28, 5395 (1983) ADSCrossRefGoogle Scholar
  55. 55.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 31, 668 (1985) ADSCrossRefGoogle Scholar
  56. 56.
    C. Kittel, Introduction to Physics of Solid State (John Wiley & Sons, Inc., New York, 2004) Google Scholar
  57. 57.
    M. Winzenick, V. Vijayakumar, W.B. Holzapfel, Phys. Rev. B 50, 381 (1994) CrossRefGoogle Scholar
  58. 58.
    K. Takemura, K. Syassen, Phys. Rev. B 32, 2213 (1985) ADSCrossRefGoogle Scholar
  59. 59.
    I.N. Makarenko, A.M. Nikolaenko, V.A. Ivanov, S.M. Stishov, Sov. Phys. JETP 42, 875 (1975) ADSGoogle Scholar
  60. 60.
    G.H. Shaw, D.A. Caldwell, Phys. Rev. 32, 7937 (1985) ADSCrossRefGoogle Scholar
  61. 61.
    J.O. Chua, A.L. Ruoff, J. Appl. Phys. 46, 4659 (1975) ADSCrossRefGoogle Scholar
  62. 62.
    M. Kumari, N. Dass, J. Phys.: Condens. Matter 2, 3219 (1990) ADSGoogle Scholar
  63. 63.
    M. Taravillo, V.C. Baonza, J. Numez, M. Caceres, Phys. Rev. B 54, 7034 (1996) ADSCrossRefGoogle Scholar
  64. 64.
    D.L. Decker, J. Appl. Phys. 42, 3239 (1971) ADSCrossRefGoogle Scholar
  65. 65.
    S.N. Vaidya, G.C. Kennedy, J. Phys. Chem. Solids 32, 951 (1971) ADSCrossRefGoogle Scholar
  66. 66.
    Y.S. Sorensen, J. Geophys. Res. 88, 3543 (1983) ADSCrossRefGoogle Scholar
  67. 67.
    M. Kumari, Physica B 212, 391 (1995) ADSCrossRefGoogle Scholar
  68. 68.
    G. Steinle-Neumann, L. Stixrude, R.E. Cohen, Phys. Rev. B 60, 741 (1999) ADSCrossRefGoogle Scholar
  69. 69.
    L. Gerward, J. Phys. Chem. Solids 46, 925 (1985) ADSCrossRefGoogle Scholar
  70. 70.
    T. Ronggang, S. Jiuxun, Z. Chao, L. Ming, Physica B 390, 167 (2007) ADSCrossRefGoogle Scholar
  71. 71.
    A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 094112 (2004) ADSCrossRefGoogle Scholar
  72. 72.
    H.K. Mao, Y. Wu, J.C. Chen, J.F. Shu, A.P. Jephcoat, J. Geophy. Res. 95, 21737 (1990) ADSCrossRefGoogle Scholar
  73. 73.
    P. Söderlind, J.A. Moriartys, J.M. Wills, Phys. Rev. B 53, 14063 (1996) ADSCrossRefGoogle Scholar
  74. 74.
    E. Huang, W.A. Bassett, P. Tao, J. Geophys. Res. 92, 8129 (1987) ADSCrossRefGoogle Scholar
  75. 75.
    T. Uchida, Y. Wang, M.L. Rivers, S.R. Sutton, J. Geophys. Res. 106, 21799 (2001) ADSCrossRefGoogle Scholar
  76. 76.
    W.W. Anderson, T.J. Ahrens, J. Geopys. Res. 99, 4273 (1994) ADSCrossRefGoogle Scholar
  77. 77.
    C.S. Yoo, H. Cynn, P. Söderlind, V. Iota, Phys. Rev. Lett. 84, 4132 (2000) ADSCrossRefGoogle Scholar
  78. 78.
    D. Antonangeli, M. Krisch, G. Fiquet, D.L. Farber, C.M. Aracne, J. Badro, F. Occelli, H. Requardt, Phys. Rev. Lett. 93, 215505 (2004) ADSCrossRefGoogle Scholar
  79. 79.
    P. Vinet, J.R. Smith, J. Ferrante, J.H. Rose, Phys. Rev. B 35, 1945 1987 ADSCrossRefGoogle Scholar
  80. 80.
    D.L. Heinz, R. Jeanloz, J. Appl. Phys. 55, 885 (1984) ADSCrossRefGoogle Scholar
  81. 81.
    S.H. Shim, T.S. Duffy, T. Kenichi, Earth Planet. Sci. Lett. 203, 729 (2002) Google Scholar
  82. 82.
    M. van Thiel, A.S. Kusubov, A.C. Mitchell, Technical Report UCRL-50108 Lawrence Radiation Lab., Livermore, CA, 1967 Google Scholar
  83. 83.
    T.S. Duffy, G. Shen, J. Shu, H.-K. Mao, R.J. Hemley, A.K. Singh J. Appl. Phys. 86, 6729 (1999) ADSCrossRefGoogle Scholar
  84. 84.
    O. Schultz, W.B. Holzapfel, Phys. Rev. B 48, 767 (1993) ADSCrossRefGoogle Scholar
  85. 85.
    W.J. Evans, M.J. Lipp, H. Cynn, C.S. Yoo, M. Somayazulu, D. Häusermann, G. Shen, V. Prakapenka, Phys. Rev. B 72, 094113 (2005) ADSCrossRefGoogle Scholar
  86. 86.
    L.A. Davis, R.B. Gordon, J. Chem. Phys. 46, 2650 (1967) ADSCrossRefGoogle Scholar
  87. 87.
    P. Kuchhal, R. Kumar, N. Dass, Phys. Rev. B 55, 8042 (1997) ADSCrossRefGoogle Scholar
  88. 88.
    M. Kumari, N. Dass, J. Phys. Condens. Matter 3, 4099 (1991) ADSCrossRefGoogle Scholar
  89. 89.
    C.A. Swenson, Phys. Rev. 111, 82 (1958) ADSCrossRefGoogle Scholar
  90. 90.
    D. Arrandonea, Y. Meng, M. Somayazulu, Physica B 355, 116 (2005) ADSCrossRefGoogle Scholar
  91. 91.
    S. Merkel, A.P. Jephcoat, J. Shu, H.-K. Mao, P. Gillet, R.J. Hemley, Phys. Chem. Miner. 29, 1 (2002) ADSCrossRefGoogle Scholar
  92. 92.
    J. Zhao, L. Wang, Z. Liu, H. Liu, G. Chen, D. Wu, J. Luo, N. Wang, Y. Yu, C. Jin, Q. Guo, J. Am. Chem. Soc. 130, 13828 (2008) CrossRefGoogle Scholar
  93. 93.
    G. Garbarino, A. Sow, P. Lejay, A. Sulpice, P. Toutlemonde, M. Mezouar, M. Nunez-Regueiro, Europhys. Lett. 86, 27001 (2009) ADSCrossRefGoogle Scholar
  94. 94.
    S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayawa, T.M. Takata, K. Prassides, Phys. Rev. B 80, 064506 (2009) ADSCrossRefGoogle Scholar
  95. 95.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, Appl. Phys. Lett. 93, 152505 (2008) ADSCrossRefGoogle Scholar
  96. 96.
    R.S. Kumar, A.L. Cornelius, J.L. Sarrao, Phys. Rev. B 70, 214526 (2004) ADSCrossRefGoogle Scholar
  97. 97.
    N.F. Brady, J.M. Montgomery, G. Tosi, T. Gebre, S.T. Weir, Y.K. Vohra, D.J. Hilton, Eur. Phys. J. B 86, 334 (2013) ADSCrossRefGoogle Scholar
  98. 98.
    W.O. Uhoya, G.M. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, J. Phys.: Condens. Matter 23, 365703 (2011) Google Scholar
  99. 99.
    N.F. Mott, H. Jones, Properties of Metals and Alloys (Dover Publications, New York, 1958) Google Scholar
  100. 100.
    S. Speziale, C.S. Zha, T.S. Duffy, J. Geophys. Res. 106, 515 (2001) ADSCrossRefGoogle Scholar
  101. 101.
    Y. Fei, Am. Mineral. 84, 272 (1999) ADSCrossRefGoogle Scholar
  102. 102.
    M.S. Vassiliou, T.J. Ahrens, Geophys. Res. Lett. 8, 729 (1981) ADSCrossRefGoogle Scholar
  103. 103.
    B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Mineral. 82, 51 (1997) ADSCrossRefGoogle Scholar
  104. 104.
    C.E. Runge, A. Kubo, B. Kiefer, Y. Meng, V.B. Prakapenka, G. Shen, R.J. Cava, T.S. Duffy, Phys. Chem. Miner. 33, 699 (2006) ADSCrossRefGoogle Scholar
  105. 105.
    X. Xia, D.J. Weidner, H. Zhao, Amer. Miner. 83, 68 (1998) ADSCrossRefGoogle Scholar
  106. 106.
    Y. Fei, H.K. Mao, J. Geophys. Res. 875 (1993) Google Scholar
  107. 107.
    R. Keller, W.B. Holzapfel, H. Schulz, Phys. Rev. 16, 1403 Google Scholar
  108. 108.
    H. Liu, L. Wang, X. Xiao, F. De Carlo, J. Feng, H. Mao, R. Hemley Proc. Natl. Acad. Sci. USA 105, 13229 (2008) ADSCrossRefGoogle Scholar
  109. 109.
    G. Parthasarathy, W.B. Holzapfel, Phys. Rev. Lett. 38, 10105 (1988) Google Scholar
  110. 110.
    T. Krüger, W.B. Holzapfel, Phys. Rev. Lett. 69, 305 (1992) ADSCrossRefGoogle Scholar
  111. 111.
    G. Faivre, J.L. Gardissart, Macromolecules 19, 1988 1986 ADSCrossRefGoogle Scholar
  112. 112.
    J. Scott Weaver, D.W. Chipman, T. Takahashi, Am. Mineral. 64, 604 (1979) ADSGoogle Scholar
  113. 113.
    H. Mao, B. Sundmana, Z. Wang, S.K. Saxena, J. Alloys Compd. 327, 253 (2001) CrossRefGoogle Scholar
  114. 114.
    S.P. Marsh, LASL Shock Hugoniot Data, Los Alamos Series on Dynamics Materials Properties (University of California Press, Berkeley, 1980) Google Scholar
  115. 115.
    W. Pabst, E. Gregorova, Ceramics-Silikaty 57, 167 (2013) Google Scholar
  116. 116.
    R.T. Down, D.C. Palmer, Am. Miner. 79, 9 (1994) Google Scholar
  117. 117.
    W.A. Bassett, J.D. Barnett, Phys. Earth Planet. Interiors 3, 54 (1970) ADSCrossRefGoogle Scholar
  118. 118.
    C.S. Zha, T.S. Duffy, R.T. Downs, H.K. Mao, R.J. Hemley, Earth Planet. Sci. Lett. 159, 25 (1998) Google Scholar
  119. 119.
    G.I. Kerley, L. Chhabildas, Multicomponent-Multiphase Equation of State for Carbon, Sandia National Laboratories Report SAND2001-2619, 2001 Google Scholar
  120. 120.
    Y. Wang, J.E. Pankik, B. Kiefer, K.M. Lee, Sci. Rep. 2, 520 (2012) ADSCrossRefGoogle Scholar
  121. 121.
    F. Occelli, P. Loubeyre, R. Letoullec, Nat. Mater. 2, 151 (2003) ADSCrossRefGoogle Scholar
  122. 122.
    A.J. Karavsevkii, W.B. Holzapfel, Phys. Rev. B 67, 224301 (2003) ADSCrossRefGoogle Scholar
  123. 123.
    L.W. Finger, R.M. Hazen, G. Zou, H.K. Mao, P.M. Bell, Appl. Phys. Lett. 39, 892 (1981) ADSCrossRefGoogle Scholar
  124. 124.
    R.J. Hemley, C.S. Zha, A.P. Jephcoat, H.K. Mao, L.W. Finger, Phys. Rev. B 39, 11820 (1989) ADSCrossRefGoogle Scholar
  125. 125.
    A. Polian, J.M. Besson, M. Grimsditch, W.A. Grosshans, Phys. Rev. B 39, 1332 (1989) ADSCrossRefGoogle Scholar
  126. 126.
    A.N. Zisman, I.V. Aleksandrov, S.M. Stishov, Phys. Rev. B 39, 484 (1989) Google Scholar
  127. 127.
    R.J. Hemley, A.P. Jephcoat, H.K. Mao, C.S. Zha, L.W. Finger, D.E. Cox, Nature 330, 737 (1987) ADSCrossRefGoogle Scholar
  128. 128.
    R. Jeanloz, Geophys. Res. Lett. 8, 1219 (1981) ADSCrossRefGoogle Scholar
  129. 129.
    G.S. Kell, E. Whalley, Proc. R. Soc. A 258, 565 (1965) CrossRefGoogle Scholar
  130. 130.
    M.S. Anderson, C.A. Swenson, Phys. Rev. B 10, 5184 (1974) ADSCrossRefGoogle Scholar
  131. 131.
    J. Van Straaten, I.F. Silvera, Phys. Rev. B 37, 1989 1988 ADSCrossRefGoogle Scholar
  132. 132.
    R.J. Hemley, H.K. Mao, L.W. Finger, P. Jephcoat, R.M. Hazen, C.S. Zha, Phys. Rev. 42, 6458 (1990) ADSCrossRefGoogle Scholar
  133. 133.
    S. Jiuxun, W. Qiang, C. Lingcang, J. Fukqian, Physica B 371, 257 (2006) ADSCrossRefGoogle Scholar
  134. 134.
    S. Jiuxun, personal communication, 2015 Google Scholar
  135. 135.
    H.K. Mao, P. Jephcoat, R.J. Hemley, L.W. Finger, C.S. Zha, R.M. Hazen, D.E. Cox, Science 239, 1131 (1988) ADSCrossRefGoogle Scholar
  136. 136.
    P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R.J. Hemley, H.K. Mao, L.W. Finger, Nature 383, 702 (1996) ADSCrossRefGoogle Scholar
  137. 137.
    C.S. Zha, T.S. Duffy, H. Mao, R.J. Russell, J. Hemley, Phys. Rev. B 48, 9246 (1993) ADSCrossRefGoogle Scholar
  138. 138.
    O. Olabisi, R. Simha, Macromolecules 8, 206 (1975) ADSCrossRefGoogle Scholar
  139. 139.
    V.K. Sachdev, R.K. Jain, J. Polym. Sci. B 43, 1618 (2005) CrossRefGoogle Scholar
  140. 140.
    W.A. Spitzig, O. Richmond, Polym. Eng. Sci. 9, 1129 (1979) CrossRefGoogle Scholar
  141. 141.
    L. Fontana, D.Q. Vinh, M. Santoro, S. Scandolo, F.A. Gorelli, R. Bini, M. Hanfland, Phys. Rev. B 75, 174112 (2007) ADSCrossRefGoogle Scholar
  142. 142.
    M. Naoki, S. Koeda, J. Phys. Chem. 93, 948 (1989) CrossRefGoogle Scholar
  143. 143.
    H. Schlosser, P. Vinet, J. Ferrante, Phys. Rev. B 40, 5929 (1989) ADSCrossRefGoogle Scholar
  144. 144.
    E. Donth, The Glass Transition (Springer, Berlin, 2001) Google Scholar
  145. 145.
    A. Zerr, R. Boehler, Nature 371, 506 (1994) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des Solides, CNRS, Université de Paris-SudOrsayFrance

Personalised recommendations