Advertisement

Mitigation strategies with feedback against cascading failures

  • Liang-Rui Tang
  • Yang Yang
  • Bing Fan
  • Run-Ze Wu
Regular Article
  • 23 Downloads

Abstract

Because of the complexity and randomness of cascading failures, it is difficult to eliminate cascading failures and establish a robust network. However, we can sacrifice some unnecessary services to ensure the critical services of the network surviving under the attack. To reduce the impact of cascading failures on network robustness, we introduce and investigate a mitigation strategy with feedback against cascading failures. The mitigation strategy considers the flow dynamic, where the traffic exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path length and the shortest path number between them. The simulations show that the mitigation strategy can effectively suppress the propagation of cascade. Particularly, there is an optimal feedback coefficient where the network is robust and the network traffic loss is minimal. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of mitigation, and under different cascading failure models, it can still suppress the propagation of the cascade well.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S.H. Strogatz, Nature 410, 268 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    J. Wang, Y.H. Liu, Y. Jiao et al., Eur. Phys. J. B 67, 95 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Kinney, R. Albert, Eur. Phys. J. B 46, 101 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    H.R. Liu, M.R. Dong et al., Chin. Phys. B 24, 293 (2015) MathSciNetGoogle Scholar
  7. 7.
    H. Zhao, Z.Y. Gao, Eur. Phys. J. B 57, 95 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    W.X. Wang, Y.C. Lai, D. Armbruster, Chaos 21, 033112 (2011) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D.T. Jones, D.S. Knopman, J.L. Gunter et al., Brain 139, 547 (2016) CrossRefGoogle Scholar
  10. 10.
    V. Rampurkar, P. Pentayya, H.A. Mangalvedekar et al., IEEE Trans. Smart Grid 7, 1951 (2016) CrossRefGoogle Scholar
  11. 11.
    E.V.D. Vleuten, V. Lagendijk, Energy Policy 38, 2042 (2010) CrossRefGoogle Scholar
  12. 12.
    M.E.J. Newman, Phys. Rev. E 73, 039906(E) (2006) ADSCrossRefGoogle Scholar
  13. 13.
    J.W. Wang, L.L. Rong, Saf. Sci. 47, 1332 (2009) CrossRefGoogle Scholar
  14. 14.
    J.W. Wang, Physica A 391, 4004 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    O. Yağan, Phys. Rev. E 1, 062811 (2015) ADSGoogle Scholar
  18. 18.
    P. Li, B.H. Wang, H. Sun et al., Eur. Phys. J. B 62, 101 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    X.M. Zhao, Z.Y. Gao, Eur. Phys. J. B 59, 85 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Zheng, Z.Y. Gao et al., Chin. Phys. B 18, 4754 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    Z.Y. Jiang, M.G. Liang, D.C. Guo, Int. J. Mod. Phys. C 22, 1211 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    X. Ji, B. Wang, D. Liu et al., Physica A 444, 9 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    S. Biswas, P. Sen, Phys. Rev. Lett. 115, 155501 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    W.X. Wang, J. Lü, G. Chen et al., Phys. Rev. E 77, 568 (2008) Google Scholar
  25. 25.
    D.L. Duan, X.Y. Wu, Acta Phys. Sin. 63, 39 (2014) Google Scholar
  26. 26.
    A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    B. Wang, B.J. Kim, Europhys. Lett. 78, 48001 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    K. Hu, T. Hu, Y. Tang, Chin. Phys. B 19, 65 (2010) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang-Rui Tang
    • 1
  • Yang Yang
    • 1
  • Bing Fan
    • 1
  • Run-Ze Wu
    • 1
  1. 1.State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power UniversityBeijingP.R. China

Personalised recommendations