Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mitigation strategies with feedback against cascading failures

  • 69 Accesses

Abstract

Because of the complexity and randomness of cascading failures, it is difficult to eliminate cascading failures and establish a robust network. However, we can sacrifice some unnecessary services to ensure the critical services of the network surviving under the attack. To reduce the impact of cascading failures on network robustness, we introduce and investigate a mitigation strategy with feedback against cascading failures. The mitigation strategy considers the flow dynamic, where the traffic exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path length and the shortest path number between them. The simulations show that the mitigation strategy can effectively suppress the propagation of cascade. Particularly, there is an optimal feedback coefficient where the network is robust and the network traffic loss is minimal. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of mitigation, and under different cascading failure models, it can still suppress the propagation of the cascade well.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    S.H. Strogatz, Nature 410, 268 (2001)

  2. 2.

    J. Wang, Y.H. Liu, Y. Jiao et al., Eur. Phys. J. B 67, 95 (2009)

  3. 3.

    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

  4. 4.

    A.L. Barabási, R. Albert, Science 286, 509 (1999)

  5. 5.

    R. Kinney, R. Albert, Eur. Phys. J. B 46, 101 (2005)

  6. 6.

    H.R. Liu, M.R. Dong et al., Chin. Phys. B 24, 293 (2015)

  7. 7.

    H. Zhao, Z.Y. Gao, Eur. Phys. J. B 57, 95 (2007)

  8. 8.

    W.X. Wang, Y.C. Lai, D. Armbruster, Chaos 21, 033112 (2011)

  9. 9.

    D.T. Jones, D.S. Knopman, J.L. Gunter et al., Brain 139, 547 (2016)

  10. 10.

    V. Rampurkar, P. Pentayya, H.A. Mangalvedekar et al., IEEE Trans. Smart Grid 7, 1951 (2016)

  11. 11.

    E.V.D. Vleuten, V. Lagendijk, Energy Policy 38, 2042 (2010)

  12. 12.

    M.E.J. Newman, Phys. Rev. E 73, 039906(E) (2006)

  13. 13.

    J.W. Wang, L.L. Rong, Saf. Sci. 47, 1332 (2009)

  14. 14.

    J.W. Wang, Physica A 391, 4004 (2012)

  15. 15.

    P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004)

  16. 16.

    A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002)

  17. 17.

    O. Yağan, Phys. Rev. E 1, 062811 (2015)

  18. 18.

    P. Li, B.H. Wang, H. Sun et al., Eur. Phys. J. B 62, 101 (2008)

  19. 19.

    X.M. Zhao, Z.Y. Gao, Eur. Phys. J. B 59, 85 (2007)

  20. 20.

    J.F. Zheng, Z.Y. Gao et al., Chin. Phys. B 18, 4754 (2009)

  21. 21.

    Z.Y. Jiang, M.G. Liang, D.C. Guo, Int. J. Mod. Phys. C 22, 1211 (2011)

  22. 22.

    X. Ji, B. Wang, D. Liu et al., Physica A 444, 9 (2016)

  23. 23.

    S. Biswas, P. Sen, Phys. Rev. Lett. 115, 155501 (2015)

  24. 24.

    W.X. Wang, J. Lü, G. Chen et al., Phys. Rev. E 77, 568 (2008)

  25. 25.

    D.L. Duan, X.Y. Wu, Acta Phys. Sin. 63, 39 (2014)

  26. 26.

    A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004)

  27. 27.

    B. Wang, B.J. Kim, Europhys. Lett. 78, 48001 (2007)

  28. 28.

    K. Hu, T. Hu, Y. Tang, Chin. Phys. B 19, 65 (2010)

Download references

Author information

Correspondence to Yang Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Yang, Y., Fan, B. et al. Mitigation strategies with feedback against cascading failures. Eur. Phys. J. B 91, 288 (2018). https://doi.org/10.1140/epjb/e2018-90435-7

Download citation

Keywords

  • Statistical and Nonlinear Physics