Advertisement

Strong disorder RG approach – a short review of recent developments

  • Ferenc Iglói
  • Cécile Monthus
Colloquium
  • 39 Downloads

Abstract

The strong disorder RG approach for random systems has been extended in many new directions since our previous review of 2005 [F. Igloi, C. Monthus, Phys. Rep. 412, 277 (2005)]. The aim of the present colloquium paper is thus to give an overview of these various recent developments. In the field of quantum disordered models, recent progress concern infinite disorder fixed points for short-ranged models in higher dimensions d > 1, strong disorder fixed points for long-ranged models, scaling of the entanglement entropy in critical ground-states and after quantum quenches, the RSRG-X procedure to construct the whole set excited stated and the RSRG-t procedure for the unitary dynamics in many-body-localized phases, the Floquet dynamics of periodically driven chains, the dissipative effects induced by the coupling to external baths, and Anderson Localization models. In the field of classical disordered models, new applications include the contact process for epidemic spreading, the strong disorder renormalization procedure for general master equations, the localization properties of random elastic networks, and the synchronization of interacting non-linear dissipative oscillators. Application of the method for aperiodic (or deterministic) disorder is also mentioned.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S.-K. Ma, C. Dasgupta, C.-K. Hu, Random antiferromagnetic chain, Phys. Rev. Lett. 43, 1434 (1979) ADSCrossRefGoogle Scholar
  2. 2.
    C. Dasgupta, S.-K. Ma, Low-temperature properties of the random Heisenberg antiferromagnetic chain, Phys. Rev. B 22, 1305 (1980) ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Fisher, Random transverse field Ising spin chains, Phys. Rev. Lett. 69, 534 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    D.S. Fisher, Critical behavior of random transverse-field Ising spin chains, Phys. Rev. B 51, 6411 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    F. Iglói, C. Monthus, Strong disorder RG approach of random systems, Phys. Rep. 412, 277 (2005) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    I.A. Kovács, F. Iglói, Critical behavior and entanglement of the random transverse-field Ising model between one and two dimensions, Phys. Rev. B 80, 214416 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    I.A. Kovács, F. Igloi, Renormalization group study of the two-dimensional random transverse-field Ising model, Phys. Rev. B 82, 054437 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    I.A. Kovács, F. Iglói, Infinite disorder scaling of random quantum magnets in three and higher dimensions, Phys. Rev. B 83, 174207 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    I.A. Kovács, F. Iglói, Renormalization group study of random quantum magnets, J. Phys.: Condens. Matter 23, 404204 (2011) Google Scholar
  10. 10.
    S. Iyer, D. Pekker, G. Refael, A mott glass to superfluid transition for Random Bosons in two dimensions, Phys. Rev. B 85, 094202 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    T. Vojta, Rare region effects at classical, quantum and nonequilibrium phase transitions, J. Phys. A: Math. Gen. 39, R143 (2006) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    T. Vojta, Phases and phase transitions in disordered quantum systems, https://doi.org/arXiv:1301.7746 (2013)
  13. 13.
    S. Garnerone, N. Jacobson, S. Haas, P. Zanardi, Fidelity approach to the disordered Quantum XY Model, Phys.  Rev. Lett. 102, 057205 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    N.T. Jacobson, S. Garnerone, S. Haas, P. Zanardi, Scaling of the fidelity susceptibility in a disordered quantum spin chain, Phys. Rev. B 79, 184427 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    C. Monthus, Pure and Random Quantum Ising chain: Shannon and Rényi entropies of the ground state via real space renormalization, J.  Stat. Mech. 2015, P04007 (2015) MathSciNetCrossRefGoogle Scholar
  16. 16.
    I.A. Kovács, F. Iglói, Boundary critical phenomena of the random transverse Ising model in D ≥ 2 dimensions, Phys.  Rev. B 87, 024204 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    R. Juhász, Critical behavior of models with infinite disorder at a star junction of chains, J.  Stat. Mech. 2014, P08005 (2014) CrossRefGoogle Scholar
  18. 18.
    C. Monthus, Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality, J. Stat. Mech. 2015, P06036 (2015) MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Iglói, I.A. Kovács, Transverse-spin correlations of the random transverse-field Ising model, Phys. Rev. B 97, 094205 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    J. Galambos, The asymptotic theory of extreme order statistics (Wiley, New York, 1978) Google Scholar
  21. 21.
    R. Juhász, Y-C. Lin, F. Iglói, Strong Griffiths singularities in random systems and their relation to extreme value statistics, Phys. Rev. B 73, 224206 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    Y-C. Lin, F. Iglói, H. Rieger, Entanglement entropyat infinite randomness fixed points in higher dimensions, Phys. Rev. Lett. 99, 147202 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    R. Yu, H. Saleur, S. Haas, Entanglement entropy in the two-dimensional random transverse field Ising model, Phys. Rev. B 77, 140402(R) (2008) ADSCrossRefGoogle Scholar
  24. 24.
    C.R. Laumann, D.A. Huse, A.W.W. Ludwig, G. Refael, S. Trebst, M. Troyer, Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions, Phys. Rev. B 85, 224201 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    O. Dimitrova, M. Mézard, The cavity method for quantum disordered systems: from transverse random field ferromagnets to directed polymers in random media, J. Stat. Mech. 2011, P01020 (2011) CrossRefGoogle Scholar
  26. 26.
    C.Monthus, T. Garel, Random Transverse Field Ising Model in dimension d > 1: scaling analysis in the disordered phase from the Directed Polymer model, J. Phys. A: Math. Theor. 45, 095002 (2012) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    C. Monthus, T. Garel, Random transverse field Ising model in dimension d = 2, 3: infinite disorder scaling via a non-linear transfer approach, J. Stat. Mech. 2012, P01008 (2012) Google Scholar
  28. 28.
    C. Monthus, T. Garel, Strong disorder RG principles within a fixed cell-size real space renormalization: application to the Random transverse field Ising model on various fractal lattices, J. Stat. Mech. 2012, P05002 (2012) Google Scholar
  29. 29.
    C. Monthus, T. Garel, Random transverse field Ising model on the cayley tree: analysis via boundary strong disorder renormalization, J. Stat. Mech. 2012, P10010 (2012) MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Monthus, T. Garel, Random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization, J. Stat. Mech. 2012, P09016 (2012) MathSciNetGoogle Scholar
  31. 31.
    R. Miyazaki, H. Nishimori, Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions, Phys. Rev. E 87, 032154 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    L.B. Ioffe, M. Mézard, Disorder-driven quantum phase transitions in superconductors and magnets, Phys. Rev. Lett. 105, 037001 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    M.V. Feigel’man, L.B. Ioffe, M. Mézard, Superconductor-insulator transition and energy localization, Phys. Rev. B 82, 184534 (2010). ADSCrossRefGoogle Scholar
  34. 34.
    For a review see, A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen, Quantum phase transitions in transverse field spin models: from statistical physics to Quantum information (Cambridge University Press, Cambridge, 2015) Google Scholar
  35. 35.
    A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions, Nat. Phys. 4, 757 (2008) CrossRefGoogle Scholar
  36. 36.
    K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions, Nature (London) 465, 590 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C.J. Wang, J. Freericks, C. Monroe, Onset of a Quantum Phase Transition with a Trapped Ion Quantum Simulator, Nat. Commun. 2, 377 (2011) CrossRefGoogle Scholar
  38. 38.
    J.W. Britton, B.C. Sawyer, A.C. Keith, C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins, Nature (London) 484, 489 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    R. Islam, C. Senko, W.C. Campbell, S. Korenblit, J. Smith, A. Lee, E.E. Edwards, C.-C.J. Wang, J.K. Freericks, C. Monroe, Emergence and frustration of magnetism with variable-range interactions in a quantum simulator, Science 340, 583 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    R. Juhász, I.A. Kovács, F. Iglói, Random transverse-field Ising chain with long-range interactions, Europhys. Lett. 107, 47008 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Phase transition of one dimensional bosons with strong disorder, Phys. Rev. Lett. 93, 150402 (2004) ADSCrossRefGoogle Scholar
  42. 42.
    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Superfluid-insulator transition of disordered bosons in one-dimension, Phys. Rev. B 81, 174528 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    I.A. Kovács, R. Juhász, F. Iglói, Long-range random transverse-field Ising model in three dimensions, Phys. Rev. B 93, 184203 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    A. Dutta, R. Loganayagam, Effect of long-range connections on an infinite randomness fixed point associated with the quantum phase transitions in a transverse Ising model, Phys. Rev. B 75, 052405 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    U. Divakaran, A. Dutta, Long-range connections, quantum magnets and dilute contact processes, Physica A 384, 39 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    C. Monthus, Dyson hierarchical quantum ferromagnetic Ising chain with pure or random transverse fields, J. Stat. Mech. 2015, P05026 (2015) MathSciNetCrossRefGoogle Scholar
  47. 47.
    C. Monthus, Dyson Hierarchical long-ranged quantum spin-glass via real-space renormalization, J. Stat. Mech. 2015, P10024 (2015) MathSciNetCrossRefGoogle Scholar
  48. 48.
    R. Juhász, Infinite-disorder critical points of models with stretched exponential interactions, J. Stat. Mech. 2014, P09027 (2014) MathSciNetCrossRefGoogle Scholar
  49. 49.
    N. Moure, S. Haas, S. Kettemann, Many-body localization transition in random quantum spin chains with long-range interactions, Europhys. Lett. 111, 27003 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    N. Moure, H.Y. Lee, S. Haas, R.N. Bhatt, S. Kettemann, Disordered quantum spin chains with long-range antiferromagnetic interactions, Phys. Rev. B 97, 014206 (2018) ADSCrossRefGoogle Scholar
  51. 51.
    T. Vojta, J. A. Hoyos, Magnetic Grüneisen ratio of the random transverse-field Ising chain, Phys. Status Solidi (b) 247, 525 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    V. Shivamoggi, G. Refael, J. E. Moore, Majorana fermion chain at the Quantum Spin Hall edge, Phys. Rev. B 82, 041405(R) (2010) ADSCrossRefGoogle Scholar
  53. 53.
    Y.P. Lin, Y.J. Kao, P. Chen, Y.C. Lin, Griffiths Singularities in the Random Quantum Ising Antiferromagnet: A Tree Tensor Network Renormalization Group Study, Phys. Rev. B 96, 064427 (2017) ADSCrossRefGoogle Scholar
  54. 54.
    P. Lajkó, F. Iglói, Numerical study of the random quantum Ising antiferromagnetic chain (to be published) Google Scholar
  55. 55.
    P. Goswami, D. Schwab, S. Chakravarty, Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points, Phys. Rev. Lett. 100, 015703 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    F. Hrahsheh, J.A. Hoyos, T. Vojta, Rounding of a first-order quantum phase transition to a strong-coupling critical point, Phys. Rev. B 86, 214204 (2012) ADSCrossRefGoogle Scholar
  57. 57.
    F. Hrahsheh, R. Narayanan, J.A. Hoyos, T. Vojta, Strong-randomness infinite-coupling phase in a random quantum spin chain, Phys. Rev. B 89, 014401 (2014) ADSCrossRefGoogle Scholar
  58. 58.
    H. Barghathi, F. Hrahsheh, J.A. Hoyos, R. Narayanan, T. Vojta, Strong-randomness phenomena in quantum Ashkin-Teller models, Phys. Scr. T165, 014040 (2015) ADSCrossRefGoogle Scholar
  59. 59.
    Q. Zhu, X. Wan, R. Narayanan, J.A. Hoyos, T. Vojta, Emerging criticality in the disordered three-color Ashkin-Teller model, Phys. Rev. B 91, 224201 (2015) ADSCrossRefGoogle Scholar
  60. 60.
    A. Bellafard, S. Chakravarty, Activated scaling in disorder-rounded first-order quantum phase transitions, Phys. Rev. B 94, 094408 (2016) ADSCrossRefGoogle Scholar
  61. 61.
    C. Chatelain, D. Voliotis, Numerical evidence of the double-Griffiths phase of the random quantum Ashkin-Teller chain, Eur. Phys. J. B 89, 18 (2016) ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    A.K. Ibrahim, T. Vojta, Monte Carlo simulations of the disordered three-color quantum Ashkin-Teller chain, Phys. Rev. B 95, 054403 (2017) ADSCrossRefGoogle Scholar
  63. 63.
    C.A. Lamas, D.C. Cabra, M.D. Grynberg, G.L. Rossini, Comparison between disordered quantum spin-1/2 chains, Phys. Rev. B 74, 224435 (2006) ADSCrossRefGoogle Scholar
  64. 64.
    J. Kokalj, J. Herbrych, A. Zheludev, P. Prelovsek, Antiferromagnetic order in weakly coupled random spin chains, Phys. Rev. B 91, 155147 (2015) ADSCrossRefGoogle Scholar
  65. 65.
    R. Yu, T. Roscilde, S. Haas, Quantum disorder and Griffiths singularities in bond-diluted two-dimensional Heisenberg antiferromagnets, Phys. Rev. B 73, 064406 (2006) ADSCrossRefGoogle Scholar
  66. 66.
    N. Ma, A.W. Sandvik, D.X. Yao Criticality and Mott glass phase in a disordered two-dimensional quantum spin system, Phys. Rev. B 90, 104425 (2014) ADSCrossRefGoogle Scholar
  67. 67.
    L. Liu, H. Shao, Y.C. Lin, W. Guo, A.W. Sandvik, Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets, https://doi.org/arXiv:1804.06108 (2018)
  68. 68.
    S. Zhou, J.A. Hoyos, V. Dobrosavljevic, E. Miranda, Valence-bond theory of highly disordered quantum antiferromagnets, Europhys. Lett. 87, 27003 (2009) ADSCrossRefGoogle Scholar
  69. 69.
    V.L. Quito, J.A. Hoyos, E. Miranda, Emergent SU(3) symmetry in random spin-1 chains, Phys. Rev. Lett. 115, 167201 (2015) ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    V.L. Quito, J.A. Hoyos, E. Miranda, Random SU(2)-symmetric spin-S chains, Phys. Rev. B 94, 064405 (2016) ADSCrossRefGoogle Scholar
  71. 71.
    V.L. Quito, P.L.S. Lopes, J.A. Hoyos, E. Miranda, Highly-symmetric random one-dimensional spin models, https://doi.org/arXiv:1711.04783 (2017)
  72. 72.
    V.L. Quito, P.L.S. Lopes, J.A. Hoyos, E. Miranda, Emergent SU(N) symmetry in disordered SO(N) spin chains, https://doi.org/arXiv:1711.04781 (2017)
  73. 73.
    P. Lajkó, Renormalization-group investigation of the S=1 random antiferromagnetic Heisenberg chain, Int. J. Mod. Phys. C 17, 1739 (2006) ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    A. Lavarelo, G. Roux, Localization of Spinons in Random Majumdar-Ghosh Chains, Phys. Rev. Lett. 110, 087204 (2013) ADSCrossRefGoogle Scholar
  75. 75.
    M.C. Strinati, D. Rossini, R. Fazio, A. Russomanno, Resilience of hidden order to symmetry-preserving disorder, Phys. Rev. B 96, 214206 (2017) ADSCrossRefGoogle Scholar
  76. 76.
    R. Mélin, F. Iglói, Strongly disordered Hubbard model in one dimension: spin and orbital infinite randomness and Griffiths phases, Phys. Rev. B 74, 155104 (2006) ADSCrossRefGoogle Scholar
  77. 77.
    Y.C. Lin, H. Rieger, N. Laflorencie, F. Iglói, Strong disorder renormalization group study of S=1/2Heisenberg antiferromagnet layers/bilayers with bond randomness, site dilution and dimer dilution, Phys. Rev. B 74, 024427 (2006) ADSCrossRefGoogle Scholar
  78. 78.
    N.E. Bonesteel, K. Yang, Infinite-randomness fixed points for chains of non-Abelian quasiparticles, Phys. Rev. Lett. 99, 140405 (2007) ADSCrossRefGoogle Scholar
  79. 79.
    L. Fidkowski, G. Refael, N. Bonesteel, J. Moore, c-theorem violation for effective central charge of infinite-randomness fixed points, Phys. Rev. B 78, 224204 (2008) ADSCrossRefGoogle Scholar
  80. 80.
    L. Fidkowski, G. Refael, H.H. Lin, P. Titum, Permutation Symmetric Critical Phases in Disordered Non-Abelian Anyonic Chains, Phys. Rev. B 79, 155120 (2009) ADSCrossRefGoogle Scholar
  81. 81.
    G. Refael, J.E. Moore, Criticality and entanglement in random quantum systems, J. Phys. A: Math. Theor. 42, 504010 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, The insulating phases and superfluid-insulator transition of disordered boson chains, Phys. Rev. Lett. 100, 170402 (2008) ADSCrossRefGoogle Scholar
  83. 83.
    V. Gurarie, G. Refael, J.T. Chalker, Excitations of the one dimensional bose-einstein condensates in a random potential, Phys. Rev. Lett. 101, 170407 (2008) ADSCrossRefGoogle Scholar
  84. 84.
    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Superfluid-insulator transition of disordered bosons in one-dimension, Phys. Rev. B 81, 174528 (2010) ADSCrossRefGoogle Scholar
  85. 85.
    R. Vosk, E. Altman, Superfluid-insulator transition of ultracold bosons in disordered one-dimensional traps, Phys. Rev. B 85, 024531 (2012) ADSCrossRefGoogle Scholar
  86. 86.
    S. Iyer, D. Pekker, G. Refael, Susceptibility at the Superfluid-Insulator Transition for One-Dimensional Disordered Bosons, Phys. Rev. B 88, 220501 (2013) ADSCrossRefGoogle Scholar
  87. 87.
    G. Refael, E. Altman, Strong disorder renormalization group primer and the superfluid-insulator transition, C. R. Phys. 14, 725 (2013) ADSCrossRefGoogle Scholar
  88. 88.
    F. Hrahsheh, T. Vojta, Disordered bosons in one dimension: from weak to strong randomness criticality, Phys. Rev. Lett. 109, 265303 (2012) ADSCrossRefGoogle Scholar
  89. 89.
    E.V.H. Doggen, G. Lemarié, S. Capponi, N. Laflorencie, Weak Versus Strong Disorder Superfluid-Bose Glass Transition in One Dimension, Phys. Rev. B 96, 180202 (2017) ADSCrossRefGoogle Scholar
  90. 90.
    A. Del Maestro, B. Rosenow, M. Muller, S. Sachdev, Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition, Phys. Rev. Lett. 101, 035701 (2008) ADSCrossRefGoogle Scholar
  91. 91.
    A. Del Maestro, B. Rosenow, J.A. Hoyos, T. Vojta, Dynamical Conductivity at the Dirty Superconductor-Metal Quantum Phase Transition, Phys. Rev. Lett. 105, 145702 (2010) ADSCrossRefGoogle Scholar
  92. 92.
    D. Nozadze, T. Vojta, Numerical method for disordered quantum phase transitions in the large-N limit, Phys. Status Solidi 251, 675 (2014) CrossRefGoogle Scholar
  93. 93.
    A.K. Ibrahim, T. Vojta, Monte Carlo simulations of a disordered superconductor-metal quantum phase transition, https://doi.org/arXiv:1808.00094 (2018)
  94. 94.
    G. Ramirez, J. Rodriguez-Laguna, G. Sierra, From conformal to volume-law for the entanglement entropy in exponentially deformed critical spin 1/2 chains, J. Stat. Mech. 2014, P10004 (2014) CrossRefGoogle Scholar
  95. 95.
    G. Ramirez, J. Rodriguez-Lagunaand, G. Sierra, Entanglement over the rainbow, J. Stat. Mech. 2015, P06002 (2015) MathSciNetCrossRefGoogle Scholar
  96. 96.
    J. Rodriguez-Laguna, S.N. Santalla, G. Ramirez, G. Sierra, Entanglement in correlated random spin chains, RNA folding and kinetic roughening, New J. Phys. 18, 073025 (2016) ADSCrossRefGoogle Scholar
  97. 97.
    J. Rodriguez-Laguna, J. Dubail, G. Ramirez, P. Calabrese, G. Sierra, More on the rainbow chain: entanglement, space-time geometry and thermal states, J. Phys. A: Math. Theor. 50, 164001 (2017) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    G. Ramirez, Quantum Entanglement In Inhomogeneous 1D Systems, AIP Conf. Proc. 1950, 030007 (2018) CrossRefGoogle Scholar
  99. 99.
    V. Alba, S.N. Santalla, P. Ruggiero, J. Rodriguez-Laguna, P. Calabrese, G. Sierra, Unusual area-law violation in random inhomogeneous systems, https://doi.org/arXiv:1807.04179 (2018)
  100. 100.
    P. Calabrese, J. Cardy, B. Doyon, Entanglement entropyin extended quantum systems, J. Phys. A 42, 500301 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 643, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  103. 103.
    C. Holzhey, F. Larsen, F. Wilczek, Geometric and Renormalized Entropy in Conformal Field Theory, Nucl. Phys. B 424, 443 (1994) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003) ADSCrossRefGoogle Scholar
  105. 105.
    P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 2004, P06002 (2004) zbMATHGoogle Scholar
  106. 106.
    P. Calabrese, A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78, 32329 (2008) ADSCrossRefGoogle Scholar
  107. 107.
    R. Vasseur, A. Roshani, S. Haas, H. Saleur, Healing of Defects in Random Antiferromagnetic Spin Chains, EPL 119, 50004 (2017) ADSCrossRefGoogle Scholar
  108. 108.
    R. Vasseur, J.E. Moore, multifractal orthogonality catastrophe in 1D Random Quantum critical points, Phys. Rev. B 92, 054203 (2015) ADSCrossRefGoogle Scholar
  109. 109.
    J.A. Hoyos, A.P. Vieira, N. Laflorencie, E. Miranda, Correlation amplitude and entanglement entropy in random spin chains, Phys. Rev. B 76, 174425 (2007) ADSCrossRefGoogle Scholar
  110. 110.
    G. Refael, J.E. Moore, Entanglement entropy of the random spin-1 Heisenberg chain, Phys. Rev. B 76, 024419 (2007) ADSCrossRefGoogle Scholar
  111. 111.
    A. Saguia, M.S. Sarandy, B. Boechat, M.A. Continentino, Entanglement Entropy in Random Quantum Spin-S Chains, Phys. Rev. A 75, 052329 (2007) ADSCrossRefGoogle Scholar
  112. 112.
    A. Saguia, M.S. Sarandy, Nonadditive entropy for random quantum spin-S chains, Phys. Lett. A 374, 3384 (2010) ADSzbMATHCrossRefGoogle Scholar
  113. 113.
    F. Iglói, R. Juhász, Exact relationship between the entanglement entropies of XY and quantum Ising chains, Europhys. Lett. 81, 57003 (2008) ADSCrossRefGoogle Scholar
  114. 114.
    F. Iglói, Y.C. Lin, H. Rieger, C. Monthus, Finite-size scaling of pseudo-critical point distributions in the random transverse-field Ising chain, Phys. Rev. B 76, 064421 (2007) ADSCrossRefGoogle Scholar
  115. 115.
    R. Santachiara, Increasing of entanglement entropy from pure to random quantum critical chains, J. Stat. Mech. 2006, L06002 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    J.A. Hoyos, N. Laflorencie, A.P. Vieira, T. Vojta, Protecting clean critical points by local disorder correlations, Europhys. Lett. 93, 30004 (2011) ADSCrossRefGoogle Scholar
  117. 117.
    J.C. Getelina, F.C. Alcaraz, J.A. Hoyos, Entanglement properties of correlated random spin chains and similarities with conformal invariant systems, Phys. Rev. B 93, 045136 (2016) ADSCrossRefGoogle Scholar
  118. 118.
    R. Juhász, I.A. Kovács, G. Roósz, F. Iglói, Entanglement between random and clean quantum spin chains, J. Phys. A: Math. Theor. 50, 324003 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    R. Juhász, J. Entanglement across extended random defects in the XX spin chain, Stat. Mech. 2017, 083107 (2017) MathSciNetCrossRefGoogle Scholar
  120. 120.
    R. Juhász, J.M. Oberreuter, Z. Zimborás, Entanglement Entropy of Disordered Quantum Wire Junctions, https://doi.org/arXiv:1808.02576 (2018)
  121. 121.
    A.P. Vieira, Aperiodic quantum XXZ chains: Renormalization-group results, Phys. Rev. B 71, 134408 (2005) ADSCrossRefGoogle Scholar
  122. 122.
    F.J.O. Filho, M.S. Faria, A.P. Vieira, Strong disorder renormalization group study of aperiodic quantum Ising chains, J. Stat. Mech. 2012, P03007 (2012) Google Scholar
  123. 123.
    H.L. Casa Grande, N. Laflorencie, F. Alet, A.P. Vieira, Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings, Phys. Rev. B 89, 134408 (2014) ADSCrossRefGoogle Scholar
  124. 124.
    A.P. Vieira, J.A. Hoyos, Localization and emergent dimerization in aperiodic quantum spin chains, Phys. Rev. B 98, 104203 (2018) ADSCrossRefGoogle Scholar
  125. 125.
    F. Iglói, R. Juhász, Z. Zimborás, Entanglement entropy of aperiodic quantum spin chains, Europhys. Lett. 79, 37001 (2007) ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    R. Juhász, Z. Zimborás, Entanglement entropy in aperiodic singlet phases, J. Stat. Mech. 2017, P04004 (2007) MathSciNetGoogle Scholar
  127. 127.
    J.A. Hoyos, G. Rigolin, Quantum channels in random spin chains, Phys. Rev. A 74, 062324 (2006) ADSCrossRefGoogle Scholar
  128. 128.
    J.C. Getelina, T.R. de Oliveira, J.A. Hoyos, Violation of the Bell inequality in quantum critical random spin-1/2 chains, Phys. Lett. A 382, 2799 (2018) ADSMathSciNetCrossRefGoogle Scholar
  129. 129.
    J. Hide, Concurrence in disordered systems, J. Phys. A 45, 115302 (2012) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    M. Fagotti, P. Calabrese, J.E. Moore, Entanglement spectrum of random-singlet quantum critical points, Phys. Rev. B 83, 045110 (2011) ADSCrossRefGoogle Scholar
  131. 131.
    G. Ramirez, J. Rodriguez-Laguna, G. Sierra, Entanglement in low-energy states of the random-hopping model, J. Stat. Mech. 2014, P07003 (2014) MathSciNetCrossRefGoogle Scholar
  132. 132.
    H. Tran, N.E. Bonesteel, Valence bond entanglement and fluctuations in random singlet phases, Phys. Rev. B 84, 144420 (2011) ADSCrossRefGoogle Scholar
  133. 133.
    T. Devakul, S.N. Majumdar, D.A. Huse, Probability distribution of the entanglement across a cut at an infinite-randomness fixed point, Phys. Rev. B 95, 104204 (2017) ADSCrossRefGoogle Scholar
  134. 134.
    G. Torlai, K.D. McAlpine, G. De Chiara, Schmidt gap in random spin chains, Phys. Rev. B 98, 085153 (2018) ADSCrossRefGoogle Scholar
  135. 135.
    P. Ruggiero, V. Alba, P. Calabrese, The entanglement negativity in random spin chains, Phys. Rev. B 94, 035152 (2016) ADSCrossRefGoogle Scholar
  136. 136.
    F. Alet, S. Capponi, N. Laflorencie, M. Mambrini, Valence Bond Entanglement Entropy, Phys. Rev. Lett. 99, 117204 (2007) ADSCrossRefGoogle Scholar
  137. 137.
    Y.C. Lin, A.W. Sandvik, Definitions of entanglement entropy of spin systems in the valence-bond basis, Phys. Rev. B 82, 224414 (2010) ADSCrossRefGoogle Scholar
  138. 138.
    Y.-R. Shu, D.-X. Yao, C.-W. Ke, Y.-Ch. Lin, A.W. Sandvik, Properties of the random-singlet phase: from the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016) ADSCrossRefGoogle Scholar
  139. 139.
    I.A. Kovács, F. Iglói, Universal logarithmic terms in the entanglement entropy of 2d, 3d and 4d random transverse-field Ising models, EPL 97, 67009 (2012) ADSCrossRefGoogle Scholar
  140. 140.
    T. Senthil, S. Sachdev, Higher Dimensional Realizations of Activated Dynamic Scaling at Random Quantum Transitions, Phys. Rev. Lett. 77, 5292 (1996) ADSCrossRefGoogle Scholar
  141. 141.
    T. Vojta, J.A. Hoyos, Quantum Phase Transitions on Percolating Lattices, https://doi.org/arXiv:0707.0658 (2007)
  142. 142.
    I.A. Kovács, F. Iglói, J. Cardy, Corner contribution to percolation cluster numbers, Phys. Rev. B 86, 214203 (2012) ADSCrossRefGoogle Scholar
  143. 143.
    J. Cardy, I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nucl. Phys. B 300, 377 (1988) ADSMathSciNetCrossRefGoogle Scholar
  144. 144.
    I.A. Kovács, F. Iglói, Corner contribution to percolation cluster numbers in three dimensions, Phys. Rev. B. 89, 174202 (2014) ADSCrossRefGoogle Scholar
  145. 145.
    J.I. Cirac, F. Verstraete, Renormalization and tensor product states in spin chains and lattices, J. Phys. A: Math. Theor. 42, 504004 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    O. Gittsovich, R. Hubener, E. Rico, H.J. Briegel, Local renormalization method for random systems, New J. Phys. 12, 025020 (2010) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    A.M. Goldsborough, R.A. Romer, Self-assembling tensor networks and holography in disordered spin chains, Phys. Rev. B 89, 214203 (2014) ADSCrossRefGoogle Scholar
  148. 148.
    A.M. Goldsborough, G. Evenbly, Entanglement renormalization for disordered systems, Phys. Rev. B 96, 155136 (2017) ADSCrossRefGoogle Scholar
  149. 149.
    C. Chatelain, Quantifying and improving the accuracy of the matrix product operator renormalization group of random spin chains, https://doi.org/arxiv:1807.08984 (2018)
  150. 150.
    K. Hyatt, J.R. Garrison, B. Bauer, Extracting entanglement geometry from quantum states, Phys. Rev. Lett. 119, 140502 (2017) ADSCrossRefGoogle Scholar
  151. 151.
    R. Nandkishore, D.A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Condens. Matter. Phys. 6, 15 (2015) ADSCrossRefGoogle Scholar
  152. 152.
    E. Altman, R. Vosk, Universal dynamics and renormalization in many body localized systems, Ann. Rev. Condens. Matter. Phys. 6, 383 (2015) ADSCrossRefGoogle Scholar
  153. 153.
    S.A. Parameswaran, A.C. Potter, R. Vasseur, Eigenstate phase transitions and the emergence of universal dynamics in highly excited states, Ann. Phys. 529, 1600302 (2017) CrossRefGoogle Scholar
  154. 154.
    F. Alet, N. Laflorencie, Many-body localization: an introduction and selected topics, C. R. Phys. (2018) DOI:  https://doi.org/10.1016/j.crhy.2018.03.003
  155. 155.
    D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Ergodicity, entanglement and many-body localization, https://doi.org/arxiv:1804.11065 (2018)
  156. 156.
    J.Z. Imbrie, V. Ros, A. Scardicchio, Review: local integrals of motion in many-body localized systems, Ann. Phys. 529, 1600278 (2017) zbMATHCrossRefGoogle Scholar
  157. 157.
    L. Rademaker, M. Ortuno, A.M. Somoza, Many-body localization from the perspective of Integrals of Motion, Ann. Phys. 529, 1600322 (2017) CrossRefGoogle Scholar
  158. 158.
    D. Pekker, G. Refael, E. Altman, E. Demler, V. Oganesyan, Hilbert-glass transition: new universality of temperature-tuned many-body dynamical Quantum Criticality, Phys. Rev. X 4, 011052 (2014) Google Scholar
  159. 159.
    Y.Z. You, X.L. Qi, C. Xu, Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group, Phys. Rev. B 93, 104205 (2016) ADSCrossRefGoogle Scholar
  160. 160.
    C. Monthus, Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models, J. Phys. A: Math. Theor. 51, 115304 (2018) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Y. Huang, J.E. Moore, Excited-state entanglement and thermal mutual information in random spin chains, Phys. Rev B, 90 220202 (2014) ADSCrossRefGoogle Scholar
  162. 162.
    M. Pouranvari, K. Yang, Entanglement spectrum and entangled modes of highly excited states in random XX spin chains, Phys. Rev. B 92, 245134 (2015) ADSCrossRefGoogle Scholar
  163. 163.
    K. Agarwal, E. Demler, I. Martin, 1∕f α noise and generalized diffusion in random Heisenberg spin systems, Phys. Rev. B 92, 184203 (2015) ADSCrossRefGoogle Scholar
  164. 164.
    R. Vasseur, A.J. Friedman, S.A. Parameswaran, A.C. Potter, Particle-hole symmetry, many-body localization, and topological edge modes, Phys. Rev. B 93, 134207 (2016) ADSCrossRefGoogle Scholar
  165. 165.
    K. Slagle, Y.Z. You, C. Xu, Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group, Phys. Rev. B 94, 014205 (2016) ADSCrossRefGoogle Scholar
  166. 166.
    A.J. Friedman, R. Vasseur, A.C. Potter, S.A. Parameswaran, Localization-protected order in spin chains with non-Abelian discrete symmetries, Phys. Rev. B 98, 064203 (2018) ADSCrossRefGoogle Scholar
  167. 167.
    R. Vasseur, A.C. Potter, S.A. Parameswaran, Quantum criticality of hot random spin chains, Phys. Rev. Lett. 114, 217201 (2015) ADSCrossRefGoogle Scholar
  168. 168.
    B. Kang, A.C. Potter, R. Vasseur, Universal crossover from ground state to excited-state quantum criticality, Phys. Rev. B 95, 024205 (2017) ADSCrossRefGoogle Scholar
  169. 169.
    C. Monthus, Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, J. Stat. Mech. 2016, 033101 (2016) MathSciNetCrossRefGoogle Scholar
  170. 170.
    C. Monthus, Random transverse field spin-glass model on the cayley tree: phase transition between the two many-body-localized phases, J. Stat. Mech. 2017, 123304 (2017) MathSciNetCrossRefGoogle Scholar
  171. 171.
    R. Vosk, E. Altman, Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett. 110, 067204 (2013) ADSCrossRefGoogle Scholar
  172. 172.
    R. Vosk, E. Altman, Dynamical quantum phase transitions in random spin chains, Phys. Rev. Lett. 112, 217204 (2014) ADSCrossRefGoogle Scholar
  173. 173.
    M. Bukov, L.D’Alessio, A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering, Adv. Phys. 64, 139 (2015) ADSCrossRefGoogle Scholar
  174. 174.
    C. Monthus, Strong disorder renormalization for the dynamics of many-body-localized systems: iterative elimination of the fastest degree of freedom via the Floquet expansion, J. Phys. A: Math. Theor. 51, 275302 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Y. Huang, Entanglement dynamics in critical random quantum Ising chain with perturbations, Ann. Phys. 380, 224 (2017) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    M. Heyl, M. Vojta, Nonequilibrium dynamical renormalization group: dynamical crossover from weak to infinite randomness in the transverse-field Ising chain, Phys. Rev. B 92, 104401 (2015) ADSCrossRefGoogle Scholar
  177. 177.
    P. Hauke, M. Heyl, Many-body localization and quantum ergodicity in disordered long-range Ising models, Phys. Rev. B 92, 134204 (2015) ADSCrossRefGoogle Scholar
  178. 178.
    G. De Chiara, S. Montangero, P. Calabrese, R. Fazio, Entanglement entropy dynamics in Heisenberg chains, J. Stat. Mech. 2006, L03001 (2006) CrossRefGoogle Scholar
  179. 179.
    F. Iglói, Z. Szatmári, Y.-C. Lin, Entanglement entropy dynamics of disordered quantum spin chains, Phys. Rev. B 85, 094417 (2012) ADSCrossRefGoogle Scholar
  180. 180.
    G.C. Levine, M.J. Bantegui, J.A. Burg, Full counting statistics in a disordered free fermion system, Phys. Rev. B 86, 174202 (2012) ADSCrossRefGoogle Scholar
  181. 181.
    J.H. Bardarson, F. Pollmann, J.E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109, 017202 (2012) ADSCrossRefGoogle Scholar
  182. 182.
    Y. Zhao, F. Andraschko, J. Sirker, Entanglement entropy of disordered quantum chains following a global quench, Phys. Rev. B 93, 205146 (2016) ADSCrossRefGoogle Scholar
  183. 183.
    G. Roósz, Y.C. Lin, F. Iglói, Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder, New J. Phys. 19, 023055 (2017) ADSCrossRefGoogle Scholar
  184. 184.
    J. Herbrych, J. Kokalj, P. Prelovsek, Local spin relaxation within the random Heisenberg chain, Phys. Rev. Lett. 111, 147203 (2013) ADSCrossRefGoogle Scholar
  185. 185.
    Y.R. Shu, M. Dupont, D.X. Yao, S. Capponi, A.W. Sandvik, Dynamical properties of the S=1/2 random Heisenberg chain, Phys. Rev. B 97, 104424 (2018) ADSCrossRefGoogle Scholar
  186. 186.
    F. Iglói, G. Roósz, Y.C. Lin, Nonequilibrium quench dynamics in quantum quasicrystals, New J. Phys. 15, 023036 (2013) ADSMathSciNetCrossRefGoogle Scholar
  187. 187.
    G. Roósz, U. Divakaran, H. Rieger, F. Iglói, Non-equilibrium quantum relaxation across a localization-delocalization transition, Phys. Rev. B 90, 184202 (2014) ADSCrossRefGoogle Scholar
  188. 188.
    U. Divakaran, Sudden quenches in quasiperiodic Ising model, Phys. Rev. E 98, 032110 (2018) ADSCrossRefGoogle Scholar
  189. 189.
    P. Mason, A.M. Zagoskin, J.J. Betouras, Time-dependent real-space renormalization-group approach: application to an adiabatic random quantum Ising model, https://doi.org/arxiv:1708.05948 (2017)
  190. 190.
    C. Monthus, T. Garel, Many-body localization transition in a lattice model of interacting fermions: statistics of renormalized hoppings in configuration space, Phys. Rev. B 81, 134202 (2010) ADSCrossRefGoogle Scholar
  191. 191.
    R. Vosk, D.A. Huse, E. Altman, Theory of the many-body localization transition in one dimensional systems, Phys. Rev. X 5, 031032 (2015) Google Scholar
  192. 192.
    A.C. Potter, R. Vasseur, S.A. Parameswaran, Universal properties of many-body delocalization transitions, Phys. Rev. X 5, 031033 (2015) Google Scholar
  193. 193.
    P.T. Dumitrescu, R. Vasseur, A.C. Potter, Scaling Theory of Entanglement at the Many-Body Localization Transition, Phys. Rev. Lett. 119, 110604 (2017) ADSCrossRefGoogle Scholar
  194. 194.
    L. Zhang, B. Zhao, T. Devakul, D.A. Huse, Many-body localization phase transition: A simplified strong-randomness approximate renormalization group, Phys. Rev. B 93, 224201 (2016) ADSCrossRefGoogle Scholar
  195. 195.
    A. Goremykina, R. Vasseur, M. Serbyn, Analytically solvable renormalization group for the many-body localization transition, https://doi.org/arxiv:1807.04285 (2018)
  196. 196.
    S. Kehrein, The flow equation approach to many-particle systems (Springer-Verlag, Berlin, 2006) Google Scholar
  197. 197.
    L. Rademaker, M. Ortuno, Explicit local integrals of motion for the many-body localized state, Phys. Rev. Lett. 116, 010404 (2016) ADSCrossRefGoogle Scholar
  198. 198.
    C. Monthus, Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, J. Phys. A: Math. Theor. 49, 305002 (2016) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    D. Pekker, B.K. Clark, V. Oganesyan, G. Refael, Fixed points of Wegner-Wilson flows and many-body localization, Phys. Rev. Lett. 119, 075701 (2017) ADSCrossRefGoogle Scholar
  200. 200.
    S. Savitz, G. Refael, Stable Uunitary integrators for the numerical implementation of continuous unitary transformations, Phys. Rev. B 96, 115129 (2017) ADSCrossRefGoogle Scholar
  201. 201.
    S.J. Thomson, M. Schiro, Time Evolution of many-body localized systems with the flow equation approach, Phys. Rev. B 97, 060201 (2018) ADSCrossRefGoogle Scholar
  202. 202.
    R. Moessner, S.L. Sondhi, Equilibration and order in quantum floquet matter, Nat. Phys. 13, 424 (2017) CrossRefGoogle Scholar
  203. 203.
    C. Monthus, Periodically driven random quantum spin chains: real-space renormalization for floquet localized phases, J. Stat. Mech. 2017, 073301 (2017) MathSciNetCrossRefGoogle Scholar
  204. 204.
    W. Berdanier, M. Kolodrubetz, S.A. Parameswaran, R. Vasseur, Floquet quantum criticality, PNAS 115, 9491 (2018) ADSCrossRefGoogle Scholar
  205. 205.
    W. Berdanier, M. Kolodrubetz, S.A. Parameswaran, R. Vasseur, Strong-disorder renormalization group for periodically driven systems, https://doi.org/arxiv:1807.09767 (2018)
  206. 206.
    U. Weiss, Quantum dissipative systems, 2nd edn. (World Scientific, Singapore, 1999) Google Scholar
  207. 207.
    H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002) Google Scholar
  208. 208.
    A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1 (1987) ADSCrossRefGoogle Scholar
  209. 209.
    G. Schehr, H. Rieger, Strong randomness fixed point in the dissipative random transverse field Ising model, Phys. Rev. Lett. 96, 227201 (2006) ADSCrossRefGoogle Scholar
  210. 210.
    G. Schehr, H. Rieger, Finite temperature behavior of strongly disordered quantum magnets coupled to a dissipative bath, J. Stat. Mech. 2008, P04012 (2008) CrossRefGoogle Scholar
  211. 211.
    J.A. Hoyos, T. Vojta, Dissipation effects in percolating quantum Ising magnets, Physica B 403, 1245 (2008) ADSCrossRefGoogle Scholar
  212. 212.
    J.A. Hoyos, T. Vojta, Theory of smeared quantum phase transitions, Phys. Rev. Lett. 100, 240601 (2008) ADSCrossRefGoogle Scholar
  213. 213.
    T. Vojta, J.A. Hoyos, Smeared quantum phase transition in the dissipative random quantum Ising model, Physica E 42, 383 (2010) ADSCrossRefGoogle Scholar
  214. 214.
    J.A. Hoyos, T. Vojta, Dissipation effects in random transverse-field Ising chains, Phys. Rev. B 85, 174403 (2012) ADSCrossRefGoogle Scholar
  215. 215.
    M. Al-Ali, T. Vojta, Monte-Carlo simulations of the dissipative random transverse-field Ising chain, https://doi.org/arxiv:1307.7166 (2013)
  216. 216.
    J.A. Hoyos, C. Kotabage, T. Vojta, Effects of dissipation on a quantum critical point with disorder, Phys. Rev. Lett. 99, 230601 (2007) ADSCrossRefGoogle Scholar
  217. 217.
    T. Vojta, C. Kotabage, J.A. Hoyos, Infinite-randomness quantum critical points induced by dissipation, Phys. Rev. B 79, 024401 (2009) ADSCrossRefGoogle Scholar
  218. 218.
    T. Vojta, J.A. Hoyos, P. Mohan, R. Narayanan, Influence of superohmic dissipation on a disordered quantum critical point, J. Phys.: Condens. Matter 23, 094206 (2011) ADSGoogle Scholar
  219. 219.
    C. Monthus, Boundary-driven Lindblad dynamics of random quantum spin chains: strong disorder approach for the relaxation, the steady state and the current, J. Stat. Mech. 2017, 043303 (2017) MathSciNetCrossRefGoogle Scholar
  220. 220.
    W. De Roeck, A. Dhar, F. Huveneers, M. Schutz, Step Density Profiles in Localized Chains, J. Stat. Phys. 167, 1143 (2017) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  221. 221.
    C. Monthus, Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the Non-Equilibrium-Steady-State, J. Stat. Mech. 2017, 043302 (2017) MathSciNetCrossRefGoogle Scholar
  222. 222.
    C. Chatelain, Diverging conductance at the contact between random and pure quantum XX spin chains, J. Stat. Mech. 2017, 113301 (2017) MathSciNetCrossRefGoogle Scholar
  223. 223.
    F. Evers, A.D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008) ADSCrossRefGoogle Scholar
  224. 224.
    H.J. Mard, J.A. Hoyos, E. Miranda, V. Dobrosavljevic, Strong-disorder renormalization-group study of the one-dimensional tight-binding model, Phys. Rev. B 90, 125141 (2014) ADSCrossRefGoogle Scholar
  225. 225.
    H.J. Mard, J.A. Hoyos, E. Miranda, V. Dobrosavljevic, Strong-disorder approach for the Anderson localization transition, Phys. Rev. B 96, 045143 (2017) ADSCrossRefGoogle Scholar
  226. 226.
    H. Aoki, Real-space renormalisation-group theory for Anderson localisation: decimation method for electron systems, J. Phys. C: Solid State Phys. 13, 3369 (1980) ADSCrossRefGoogle Scholar
  227. 227.
    H. Aoki, Decimation method of real-space renormalization for electron systems with application to random systems, Physica A 114, 538 (1982) ADSCrossRefGoogle Scholar
  228. 228.
    C. Monthus, T. Garel, Statistics of renormalized on-site energies and renormalized hoppings for Anderson localization models in dimensions d = 2 and d = 3, Phys. Rev. B 80, 024203 (2009) ADSCrossRefGoogle Scholar
  229. 229.
    E. Tarquini, G. Biroli, M. Tarzia, Critical properties of the Anderson localization transition and the high dimensional limit, Phys. Rev. B 95, 094204 (2017) ADSCrossRefGoogle Scholar
  230. 230.
    S. Johri, R.N. Bhatt, Large disorder renormalization group study of the Anderson model of localization, Phys. Rev. B 90, 060205(R) (2014) ADSCrossRefGoogle Scholar
  231. 231.
    R.N. Bhatt, S. Johri, Rare fluctuation effects in the Anderson model of localization, Int. J. Mod. Phys. Conf. Ser. 11, 79 (2012) CrossRefGoogle Scholar
  232. 232.
    C. Monthus, T. Garel, Random cascade models of multifractality: real-space renormalization and travelling-waves, J. Stat. Mech. 2010, P06014 (2010) Google Scholar
  233. 233.
    C. Monthus, T. Garel, A critical Dyson hierarchical model for the Anderson localization transition, J. Stat. Mech. 2011, P05005 (2011) MathSciNetGoogle Scholar
  234. 234.
    V.L. Quito, P. Titum, D. Pekker, G. Refael, Localization transition in one dimension using Wegner flow equations, Phys. Rev. B 94, 104202 (2016) ADSCrossRefGoogle Scholar
  235. 235.
    T.E. Harris, Contact interactions on a lattice, Ann. Prob. 2, 969 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    T.M. Liggett, Stochastic interacting systems: contact, voter, and exclusion processes (Springer, Berlin, 2005) Google Scholar
  237. 237.
    T. Vojta, A. Farquhar, J. Mast, Infinite-randomness critical point in the two-dimensional disordered contact process, Phys. Rev. E 79, 011111 (2009) ADSCrossRefGoogle Scholar
  238. 238.
    T. Vojta, Monte-Carlo simulations of the clean and disordered contact process in three dimensions, Phys. Rev. E 86, 051137 (2012) ADSCrossRefGoogle Scholar
  239. 239.
    J.A. Hoyos, Weakly disordered absorbing-state phase transitions, Phys. Rev. E 78, 032101 (2008) ADSCrossRefGoogle Scholar
  240. 240.
    R. Juhász, Distribution of dynamical quantities in the contact process, random walks, and quantum spin chains in random environments, Phys. Rev. E 89, 032108 (2014) ADSCrossRefGoogle Scholar
  241. 241.
    R. Juhász, Disordered contact process with asymmetrics preading, Phys. Rev. E 87, 022133 (2013) ADSCrossRefGoogle Scholar
  242. 242.
    T. Vojta, J. Igo, J.A. Hoyos, Rare regions and Griffiths singularities at a clean critical point: the five-dimensional disordered contact process, Phys. Rev. E 90, 012139 (2014) ADSCrossRefGoogle Scholar
  243. 243.
    T. Vojta, J.A. Hoyos, Criticality and quenched disorder: rare regions vs. Harris criterion, Phys. Rev. Lett. 112, 075702 (2014) ADSCrossRefGoogle Scholar
  244. 244.
    A.K. Ibrahim, H. Barghathi, T. Vojta, Enhanced rare region effects in the contact process with long-range correlated disorder, Phys. Rev. E 90, 042132 (2014) ADSCrossRefGoogle Scholar
  245. 245.
    H. Barghathi, D. Nozadze, T. Vojta, Contact process on generalized Fibonacci chains: infinite-modulation criticality and double-log periodic oscillations, Phys. Rev. E 89, 012112 (2014) ADSCrossRefGoogle Scholar
  246. 246.
    M.A. Munoz, R. Juhász, C. Castellano, G. Ódor, Griffiths Phases on Complex Networks, Phys. Rev. Lett. 105, 128701 (2010) ADSCrossRefGoogle Scholar
  247. 247.
    H. Barghathi, T. Vojta, Random fields at a nonequilibrium phase transition, Phys. Rev. Lett. 109, 170603 (2012) ADSCrossRefGoogle Scholar
  248. 248.
    H. Barghathi, T. Vojta, Random field disorder at an absorbing state transition in one and two dimensions, Phys. Rev. E 93, 022120 (2016) ADSCrossRefGoogle Scholar
  249. 249.
    R. Juhász, I.A. Kovács, F. Iglói, Long-range epidemic spreading in a random environment, Phys. Rev. E 91, 032815 (2015) ADSMathSciNetCrossRefGoogle Scholar
  250. 250.
    R. Juhász, I.A. Kovács, Infinite randomness critical behavior of the contact process on networks with long-range connections, J. Stat. Mech. 2013, P06003 (2013) CrossRefGoogle Scholar
  251. 251.
    T. Vojta, J.A. Hoyos, Infinite-noise criticality: nonequilibrium phase transitions in fluctuating environments, Europhys. Lett. 112, 30002 (2015) ADSCrossRefGoogle Scholar
  252. 252.
    F. Vazquez, J.A. Bonachela, C. Lopez, M.A. Munoz, Temporal Griffiths Phases, Phys. Rev. Lett. 106, 235702 (2011) ADSCrossRefGoogle Scholar
  253. 253.
    H. Barghathi, J.A. Hoyos, T. Vojta, Contact process with temporal disorder, Phys. Rev. E 94, 022111 (2016) ADSCrossRefGoogle Scholar
  254. 254.
    C.E. Fiore, M.M. de Oliveira, J.A. Hoyos, Temporal disorder in discontinuous non-equilibrium phase transitions: general results, Phys. Rev. E 98, 032129 (2018) ADSCrossRefGoogle Scholar
  255. 255.
    T. Vojta, R. Dickman Spatio-temporal generalization of the Harris criterion and its application to diffusive disorder, Phys. Rev. E 93, 032143 (2016) ADSCrossRefGoogle Scholar
  256. 256.
    P. Le Doussal, The Sinai model in the presence of dilute absorbers, J. Stat. Mech. 2009, P07032 (2009) Google Scholar
  257. 257.
    R. Juhász, Competition between quenched disorder and long-range connections: a numerical study of diffusion, Phys. Rev. E 85, 011118 (2012) ADSCrossRefGoogle Scholar
  258. 258.
    R. Juhász, Random walks in a random environment on a strip: a renormalization group approach, J. Phys. A: Math. Theor. 41, 315001 (2008) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  259. 259.
    R. Juhász, F. Iglói, Anomalous diffusion in disordered multi-channel systems, J. Stat. Mech. 2010, P03012 (2010) Google Scholar
  260. 260.
    R. Juhász, The effect of asymmetric disorder on the diffusion in arbitrary networks, Europhys. Lett. 98, 30001 (2012) ADSCrossRefGoogle Scholar
  261. 261.
    C. Monthus, T. Garel, Random walk in two-dimensional self-affine random potentials: Strong-disorder renormalization approach, Phys. Rev. E 81, 011138 (2010) ADSCrossRefGoogle Scholar
  262. 262.
    C. Monthus, T. Garel, Non equilibrium dynamics of disordered systems: understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space, J. Phys. A: Math. Theor. 41, 255002 (2008) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  263. 263.
    C. Monthus, T. Garel, Non-equilibrium dynamics of finite-dimensional disordered systems : RG flow towards an “infinite disorder” fixed point at large times, J. Stat. Mech. 2008, P07002 (2008) Google Scholar
  264. 264.
    C. Monthus, T. Garel, Equilibrium of disordered systems: constructing the appropriate valleys in each sample via strong disorder renormalization in configuration space, J. Phys. A: Math. Theor. 41, 375005 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    C. Monthus, T. Garel, Driven interfaces in random media at finite temperature: is there an anomalous zero-velocity phase at small external force? Phys. Rev. E 78, 041133 (2008) ADSCrossRefGoogle Scholar
  266. 266.
    S. Bo, A. Celani, Multiple-scale stochastic processes: decimation, averaging and beyond, Phys. Rep. 670, 1 (2017) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  267. 267.
    C. Monthus, T. Garel, Statistics of first-passage times in disordered systems using backward master equations and their exact renormalization rules, J. Phys. A: Math. Theor. 43, 095001 (2010) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  268. 268.
    C. Monthus, T. Garel, Dynamics of Ising models near zero temperature: real space renormalization approach, J. Stat. Mech. 2013, P02037 (2013) MathSciNetCrossRefGoogle Scholar
  269. 269.
    C. Monthus, T. Garel, Dynamical barriers for the random ferromagnetic Ising model on the Cayley tree: traveling-wave solution of the real space renormalization flow, J. Stat. Mech. 2013, P05012 (2013) MathSciNetCrossRefGoogle Scholar
  270. 270.
    C. Monthus, T. Garel, Dynamical Barriers in the Dyson Hierarchical model via Real Space Renormalization, J. Stat. Mech. 2013, P02023 (2013) CrossRefGoogle Scholar
  271. 271.
    C. Monthus, Low-temperature dynamics of long-ranged spin-glasses: full hierarchy of relaxation times via real-space renormalization, J. Stat. Mech. 2014, P08009 (2014) MathSciNetCrossRefGoogle Scholar
  272. 272.
    C. Monthus, Real-space renormalization for the finite temperature statics and dynamics of the Dyson long-ranged ferromagnetic and spin-glass models, J. Stat. Mech. 2016, 043302 (2016) MathSciNetCrossRefGoogle Scholar
  273. 273.
    F. J. Dyson, The dynamics of a disordered linear chain, Phys. Rev. 92, 1331 (1953) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  274. 274.
    C. Monthus, T. Garel, Anderson localization of phonons in dimension d=1,2,3: finite-size properties of the inverse participation ratios of eigenstates, Phys. Rev. B 81, 224208 (2010) ADSCrossRefGoogle Scholar
  275. 275.
    M.B. Hastings, Random vibrational networks and the renormalization group, Phys. Rev. Lett. 90, 148702 (2003) ADSCrossRefGoogle Scholar
  276. 276.
    A. Amir, Y. Oreg, Y. Imry, Localization, Anomalous diffusion, and slow relaxations: a random distance matrix approach, Phys. Rev. Lett. 105, 070601 (2010) ADSCrossRefGoogle Scholar
  277. 277.
    C. Monthus, T. Garel, Random elastic networks: strong disorder renormalization approach, J. Phys. A: Math. Theor. 44, 085001 (2011) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  278. 278.
    S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  279. 279.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear science (Cambridge University Press, New York, 2001) Google Scholar
  280. 280.
    A. Pikovsky, M. Rosenblum, Dynamics of globally coupled oscillators: progress and perspectives, Chaos 25, 097616 (2015) ADSzbMATHCrossRefGoogle Scholar
  281. 281.
    O. Kogan, J.L. Rogers, M.C. Cross, G. Refael, Renormalization group approach to oscillator synchronization, Phys. Rev. E 80, 036206 (2009) ADSCrossRefGoogle Scholar
  282. 282.
    T.E. Lee, G. Refael, M.C. Cross, O. Kogan, J.L. Rogers, Universality in the one-dimensional chain of phase-coupled oscillators, Phys. Rev. E 80, 046210 (2009) ADSCrossRefGoogle Scholar
  283. 283.
    P. Mohan, R. Narayanan, T. Vojta, Infinite randomness and quantum Griffiths effects in a classical system: the randomly layered Heisenberg magnet, Phys. Rev. B 81, 144407 (2010) ADSCrossRefGoogle Scholar
  284. 284.
    C. Monthus, T. Garel, Random wetting transition on the Cayley tree: a disordered first-order transition with two correlation length exponents, J. Phys. A: Math. Theor. 42, 165003 (2009) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  285. 285.
    C. Monthus, Strong Disorder Renewal Approach to DNA denaturation and wetting: typical and large deviation properties of the free energy, J. Stat. Mech. 2017, 013301 (2017) MathSciNetCrossRefGoogle Scholar
  286. 286.
    C. Monthus, One-dimensional Ising spin-glass with power-law interaction : real-space renormalization at zerotemperature, J. Stat. Mech. 2014, P06015 (2014) MathSciNetCrossRefGoogle Scholar
  287. 287.
    C. Monthus, Fractal dimension of spin glasses interfaces in dimensions d=2 and d=3 via strong disorder renormalization at zero temperature, Fractals 23, 1550042 (2015) ADSMathSciNetCrossRefGoogle Scholar
  288. 288.
    W. Wang, M.A. Moore, H.G. Katzgraber, The fractal dimension of interfaces in Edwards-Anderson and Long-range Ising spin glasses: determining the applicability of different theoretical descriptions, Phys. Rev. Lett. 119, 100602 (2017) ADSCrossRefGoogle Scholar
  289. 289.
    W. Wang, M.A. Moore, H.G. Katzgraber, Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions, Phys. Rev. E 97, 032104 (2018) ADSMathSciNetCrossRefGoogle Scholar
  290. 290.
    G. Schehr, P. Le Doussal, Extreme value statistics from the real space renormalization group: brownian motion, Bessel processes and continuous time random walks, J. Stat. Mech. 2010, P01009 (2010) MathSciNetGoogle Scholar
  291. 291.
    G. Györgyi, N.R. Moloney, K. Ozogány, Z. Rácz, M. Droz, Renormalization-group theory for finite-size scaling in extreme statistics, Phys. Rev. E 81, 041135 (2010) ADSMathSciNetCrossRefGoogle Scholar
  292. 292.
    E. Bertin, G. Györgyi, Renormalization flow in extreme value statistics, J. Stat. Mech. 2010, P08022 (2010) CrossRefGoogle Scholar
  293. 293.
    I. Calvo, J.C. Cuchí, J.G. Esteve, F. Falceto, Extreme-value distributions and renormalization group, Phys. Rev. E 86, 041109 (2012) ADSCrossRefGoogle Scholar
  294. 294.
    F. Angeletti, E. Bertin, P. Abry, Renormalization flow for extreme value statistics of random variables raised to a varying power, J. Phys. A: Math. Theor. 45, 115004 (2012) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  295. 295.
    R. Juhász, A non-conserving coagulation model with extremal dynamics, J. Stat. Mech. 2009, P03033 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for Physics, Institute for Solid State Physics and OpticsBudapestHungary
  2. 2.Institute of Theoretical Physics, Szeged UniversitySzegedHungary
  3. 3.Institut de Physique Théorique, Université Paris Saclay, CNRS, CEAGif-sur-YvetteFrance

Personalised recommendations