Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Strong disorder RG approach – a short review of recent developments


The strong disorder RG approach for random systems has been extended in many new directions since our previous review of 2005 [F. Igloi, C. Monthus, Phys. Rep. 412, 277 (2005)]. The aim of the present colloquium paper is thus to give an overview of these various recent developments. In the field of quantum disordered models, recent progress concern infinite disorder fixed points for short-ranged models in higher dimensions d > 1, strong disorder fixed points for long-ranged models, scaling of the entanglement entropy in critical ground-states and after quantum quenches, the RSRG-X procedure to construct the whole set excited stated and the RSRG-t procedure for the unitary dynamics in many-body-localized phases, the Floquet dynamics of periodically driven chains, the dissipative effects induced by the coupling to external baths, and Anderson Localization models. In the field of classical disordered models, new applications include the contact process for epidemic spreading, the strong disorder renormalization procedure for general master equations, the localization properties of random elastic networks, and the synchronization of interacting non-linear dissipative oscillators. Application of the method for aperiodic (or deterministic) disorder is also mentioned.

This is a preview of subscription content, log in to check access.


  1. 1.

    S.-K. Ma, C. Dasgupta, C.-K. Hu, Random antiferromagnetic chain, Phys. Rev. Lett. 43, 1434 (1979)

  2. 2.

    C. Dasgupta, S.-K. Ma, Low-temperature properties of the random Heisenberg antiferromagnetic chain, Phys. Rev. B 22, 1305 (1980)

  3. 3.

    D.S. Fisher, Random transverse field Ising spin chains, Phys. Rev. Lett. 69, 534 (1992)

  4. 4.

    D.S. Fisher, Critical behavior of random transverse-field Ising spin chains, Phys. Rev. B 51, 6411 (1995)

  5. 5.

    F. Iglói, C. Monthus, Strong disorder RG approach of random systems, Phys. Rep. 412, 277 (2005)

  6. 6.

    I.A. Kovács, F. Iglói, Critical behavior and entanglement of the random transverse-field Ising model between one and two dimensions, Phys. Rev. B 80, 214416 (2009)

  7. 7.

    I.A. Kovács, F. Igloi, Renormalization group study of the two-dimensional random transverse-field Ising model, Phys. Rev. B 82, 054437 (2010)

  8. 8.

    I.A. Kovács, F. Iglói, Infinite disorder scaling of random quantum magnets in three and higher dimensions, Phys. Rev. B 83, 174207 (2011)

  9. 9.

    I.A. Kovács, F. Iglói, Renormalization group study of random quantum magnets, J. Phys.: Condens. Matter 23, 404204 (2011)

  10. 10.

    S. Iyer, D. Pekker, G. Refael, A mott glass to superfluid transition for Random Bosons in two dimensions, Phys. Rev. B 85, 094202 (2012)

  11. 11.

    T. Vojta, Rare region effects at classical, quantum and nonequilibrium phase transitions, J. Phys. A: Math. Gen. 39, R143 (2006)

  12. 12.

    T. Vojta, Phases and phase transitions in disordered quantum systems, (2013)

  13. 13.

    S. Garnerone, N. Jacobson, S. Haas, P. Zanardi, Fidelity approach to the disordered Quantum XY Model, Phys.  Rev. Lett. 102, 057205 (2009)

  14. 14.

    N.T. Jacobson, S. Garnerone, S. Haas, P. Zanardi, Scaling of the fidelity susceptibility in a disordered quantum spin chain, Phys. Rev. B 79, 184427 (2009)

  15. 15.

    C. Monthus, Pure and Random Quantum Ising chain: Shannon and Rényi entropies of the ground state via real space renormalization, J.  Stat. Mech. 2015, P04007 (2015)

  16. 16.

    I.A. Kovács, F. Iglói, Boundary critical phenomena of the random transverse Ising model in D ≥ 2 dimensions, Phys.  Rev. B 87, 024204 (2013)

  17. 17.

    R. Juhász, Critical behavior of models with infinite disorder at a star junction of chains, J.  Stat. Mech. 2014, P08005 (2014)

  18. 18.

    C. Monthus, Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality, J. Stat. Mech. 2015, P06036 (2015)

  19. 19.

    F. Iglói, I.A. Kovács, Transverse-spin correlations of the random transverse-field Ising model, Phys. Rev. B 97, 094205 (2018)

  20. 20.

    J. Galambos,The asymptotic theory of extreme order statistics (Wiley, New York, 1978)

  21. 21.

    R. Juhász, Y-C. Lin, F. Iglói, Strong Griffiths singularities in random systems and their relation to extreme value statistics, Phys. Rev. B 73, 224206 (2006)

  22. 22.

    Y-C. Lin, F. Iglói, H. Rieger, Entanglement entropyat infinite randomness fixed points in higher dimensions, Phys. Rev. Lett. 99, 147202 (2007)

  23. 23.

    R. Yu, H. Saleur, S. Haas, Entanglement entropy in the two-dimensional random transverse field Ising model, Phys. Rev. B 77, 140402(R) (2008)

  24. 24.

    C.R. Laumann, D.A. Huse, A.W.W. Ludwig, G. Refael, S. Trebst, M. Troyer, Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions, Phys. Rev. B 85, 224201 (2012)

  25. 25.

    O. Dimitrova, M. Mézard, The cavity method for quantum disordered systems: from transverse random field ferromagnets to directed polymers in random media, J. Stat. Mech. 2011, P01020 (2011)

  26. 26.

    C.Monthus, T. Garel, Random Transverse Field Ising Model in dimension d > 1: scaling analysis in the disordered phase from the Directed Polymer model, J. Phys. A: Math. Theor. 45, 095002 (2012)

  27. 27.

    C. Monthus, T. Garel, Random transverse field Ising model in dimension d = 2, 3: infinite disorder scaling via a non-linear transfer approach, J. Stat. Mech. 2012, P01008 (2012)

  28. 28.

    C. Monthus, T. Garel, Strong disorder RG principles within a fixed cell-size real space renormalization: application to the Random transverse field Ising model on various fractal lattices, J. Stat. Mech. 2012, P05002 (2012)

  29. 29.

    C. Monthus, T. Garel, Random transverse field Ising model on the cayley tree: analysis via boundary strong disorder renormalization, J. Stat. Mech. 2012, P10010 (2012)

  30. 30.

    C. Monthus, T. Garel, Random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization, J. Stat. Mech. 2012, P09016 (2012)

  31. 31.

    R. Miyazaki, H. Nishimori, Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions, Phys. Rev. E 87, 032154 (2013)

  32. 32.

    L.B. Ioffe, M. Mézard, Disorder-driven quantum phase transitions in superconductors and magnets, Phys. Rev. Lett. 105, 037001 (2010)

  33. 33.

    M.V. Feigel’man, L.B. Ioffe, M. Mézard, Superconductor-insulator transition and energy localization, Phys. Rev. B 82, 184534 (2010).

  34. 34.

    For a review see, A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen,Quantum phase transitions in transverse field spin models: from statistical physics to Quantum information (Cambridge University Press, Cambridge, 2015)

  35. 35.

    A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions, Nat. Phys. 4, 757 (2008)

  36. 36.

    K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions, Nature (London) 465, 590 (2010)

  37. 37.

    R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C.J. Wang, J. Freericks, C. Monroe, Onset of a Quantum Phase Transition with a Trapped Ion Quantum Simulator, Nat. Commun. 2, 377 (2011)

  38. 38.

    J.W. Britton, B.C. Sawyer, A.C. Keith, C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins, Nature (London) 484, 489 (2012)

  39. 39.

    R. Islam, C. Senko, W.C. Campbell, S. Korenblit, J. Smith, A. Lee, E.E. Edwards, C.-C.J. Wang, J.K. Freericks, C. Monroe, Emergence and frustration of magnetism with variable-range interactions in a quantum simulator, Science 340, 583 (2013)

  40. 40.

    R. Juhász, I.A. Kovács, F. Iglói, Random transverse-field Ising chain with long-range interactions, Europhys. Lett. 107, 47008 (2014)

  41. 41.

    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Phase transition of one dimensional bosons with strong disorder, Phys. Rev. Lett. 93, 150402 (2004)

  42. 42.

    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Superfluid-insulator transition of disordered bosons in one-dimension, Phys. Rev. B 81, 174528 (2010)

  43. 43.

    I.A. Kovács, R. Juhász, F. Iglói, Long-range random transverse-field Ising model in three dimensions, Phys. Rev. B 93, 184203 (2016)

  44. 44.

    A. Dutta, R. Loganayagam, Effect of long-range connections on an infinite randomness fixed point associated with the quantum phase transitions in a transverse Ising model, Phys. Rev. B 75, 052405 (2007)

  45. 45.

    U. Divakaran, A. Dutta, Long-range connections, quantum magnets and dilute contact processes, Physica A 384, 39 (2007)

  46. 46.

    C. Monthus, Dyson hierarchical quantum ferromagnetic Ising chain with pure or random transverse fields, J. Stat. Mech. 2015, P05026 (2015)

  47. 47.

    C. Monthus, Dyson Hierarchical long-ranged quantum spin-glass via real-space renormalization, J. Stat. Mech. 2015, P10024 (2015)

  48. 48.

    R. Juhász, Infinite-disorder critical points of models with stretched exponential interactions, J. Stat. Mech. 2014, P09027 (2014)

  49. 49.

    N. Moure, S. Haas, S. Kettemann, Many-body localization transition in random quantum spin chains with long-range interactions, Europhys. Lett. 111, 27003 (2015)

  50. 50.

    N. Moure, H.Y. Lee, S. Haas, R.N. Bhatt, S. Kettemann, Disordered quantum spin chains with long-range antiferromagnetic interactions, Phys. Rev. B 97, 014206 (2018)

  51. 51.

    T. Vojta, J. A. Hoyos, Magnetic Grüneisen ratio of the random transverse-field Ising chain, Phys. Status Solidi (b) 247, 525 (2010)

  52. 52.

    V. Shivamoggi, G. Refael, J. E. Moore, Majorana fermion chain at the Quantum Spin Hall edge, Phys. Rev. B 82, 041405(R) (2010)

  53. 53.

    Y.P. Lin, Y.J. Kao, P. Chen, Y.C. Lin, Griffiths Singularities in the Random Quantum Ising Antiferromagnet: A Tree Tensor Network Renormalization Group Study, Phys. Rev. B 96, 064427 (2017)

  54. 54.

    P. Lajkó, F. Iglói, Numerical study of the random quantum Ising antiferromagnetic chain (to be published)

  55. 55.

    P. Goswami, D. Schwab, S. Chakravarty, Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points, Phys. Rev. Lett. 100, 015703 (2008)

  56. 56.

    F. Hrahsheh, J.A. Hoyos, T. Vojta, Rounding of a first-order quantum phase transition to a strong-coupling critical point, Phys. Rev. B 86, 214204 (2012)

  57. 57.

    F. Hrahsheh, R. Narayanan, J.A. Hoyos, T. Vojta, Strong-randomness infinite-coupling phase in a random quantum spin chain, Phys. Rev. B 89, 014401 (2014)

  58. 58.

    H. Barghathi, F. Hrahsheh, J.A. Hoyos, R. Narayanan, T. Vojta, Strong-randomness phenomena in quantum Ashkin-Teller models, Phys. Scr. T165, 014040 (2015)

  59. 59.

    Q. Zhu, X. Wan, R. Narayanan, J.A. Hoyos, T. Vojta, Emerging criticality in the disordered three-color Ashkin-Teller model, Phys. Rev. B 91, 224201 (2015)

  60. 60.

    A. Bellafard, S. Chakravarty, Activated scaling in disorder-rounded first-order quantum phase transitions, Phys. Rev. B 94, 094408 (2016)

  61. 61.

    C. Chatelain, D. Voliotis, Numerical evidence of the double-Griffiths phase of the random quantum Ashkin-Teller chain, Eur. Phys. J. B 89, 18 (2016)

  62. 62.

    A.K. Ibrahim, T. Vojta, Monte Carlo simulations of the disordered three-color quantum Ashkin-Teller chain, Phys. Rev. B 95, 054403 (2017)

  63. 63.

    C.A. Lamas, D.C. Cabra, M.D. Grynberg, G.L. Rossini, Comparison between disordered quantum spin-1/2 chains, Phys. Rev. B 74, 224435 (2006)

  64. 64.

    J. Kokalj, J. Herbrych, A. Zheludev, P. Prelovsek, Antiferromagnetic order in weakly coupled random spin chains, Phys. Rev. B 91, 155147 (2015)

  65. 65.

    R. Yu, T. Roscilde, S. Haas, Quantum disorder and Griffiths singularities in bond-diluted two-dimensional Heisenberg antiferromagnets, Phys. Rev. B 73, 064406 (2006)

  66. 66.

    N. Ma, A.W. Sandvik, D.X. Yao Criticality and Mott glass phase in a disordered two-dimensional quantum spin system, Phys. Rev. B 90, 104425 (2014)

  67. 67.

    L. Liu, H. Shao, Y.C. Lin, W. Guo, A.W. Sandvik, Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets, (2018)

  68. 68.

    S. Zhou, J.A. Hoyos, V. Dobrosavljevic, E. Miranda, Valence-bond theory of highly disordered quantum antiferromagnets, Europhys. Lett. 87, 27003 (2009)

  69. 69.

    V.L. Quito, J.A. Hoyos, E. Miranda, Emergent SU(3) symmetry in random spin-1 chains, Phys. Rev. Lett. 115, 167201 (2015)

  70. 70.

    V.L. Quito, J.A. Hoyos, E. Miranda, Random SU(2)-symmetric spin-S chains, Phys. Rev. B 94, 064405 (2016)

  71. 71.

    V.L. Quito, P.L.S. Lopes, J.A. Hoyos, E. Miranda, Highly-symmetric random one-dimensional spin models, (2017)

  72. 72.

    V.L. Quito, P.L.S. Lopes, J.A. Hoyos, E. Miranda, Emergent SU(N) symmetry in disordered SO(N) spin chains, (2017)

  73. 73.

    P. Lajkó, Renormalization-group investigation of the S=1 random antiferromagnetic Heisenberg chain, Int. J. Mod. Phys. C 17, 1739 (2006)

  74. 74.

    A. Lavarelo, G. Roux, Localization of Spinons in Random Majumdar-Ghosh Chains, Phys. Rev. Lett. 110, 087204 (2013)

  75. 75.

    M.C. Strinati, D. Rossini, R. Fazio, A. Russomanno, Resilience of hidden order to symmetry-preserving disorder, Phys. Rev. B 96, 214206 (2017)

  76. 76.

    R. Mélin, F. Iglói, Strongly disordered Hubbard model in one dimension: spin and orbital infinite randomness and Griffiths phases, Phys. Rev. B 74, 155104 (2006)

  77. 77.

    Y.C. Lin, H. Rieger, N. Laflorencie, F. Iglói, Strong disorder renormalization group study of S=1/2Heisenberg antiferromagnet layers/bilayers with bond randomness, site dilution and dimer dilution, Phys. Rev. B 74, 024427 (2006)

  78. 78.

    N.E. Bonesteel, K. Yang, Infinite-randomness fixed points for chains of non-Abelian quasiparticles, Phys. Rev. Lett. 99, 140405 (2007)

  79. 79.

    L. Fidkowski, G. Refael, N. Bonesteel, J. Moore, c-theorem violation for effective central charge of infinite-randomness fixed points, Phys. Rev. B 78, 224204 (2008)

  80. 80.

    L. Fidkowski, G. Refael, H.H. Lin, P. Titum, Permutation Symmetric Critical Phases in Disordered Non-Abelian Anyonic Chains, Phys. Rev. B 79, 155120 (2009)

  81. 81.

    G. Refael, J.E. Moore, Criticality and entanglement in random quantum systems, J. Phys. A: Math. Theor. 42, 504010 (2009)

  82. 82.

    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, The insulating phases and superfluid-insulator transition of disordered boson chains, Phys. Rev. Lett. 100, 170402 (2008)

  83. 83.

    V. Gurarie, G. Refael, J.T. Chalker, Excitations of the one dimensional bose-einstein condensates in a random potential, Phys. Rev. Lett. 101, 170407 (2008)

  84. 84.

    E. Altman, Y. Kafri, A. Polkovnikov, G. Refael, Superfluid-insulator transition of disordered bosons in one-dimension, Phys. Rev. B 81, 174528 (2010)

  85. 85.

    R. Vosk, E. Altman, Superfluid-insulator transition of ultracold bosons in disordered one-dimensional traps, Phys. Rev. B 85, 024531 (2012)

  86. 86.

    S. Iyer, D. Pekker, G. Refael, Susceptibility at the Superfluid-Insulator Transition for One-Dimensional Disordered Bosons, Phys. Rev. B 88, 220501 (2013)

  87. 87.

    G. Refael, E. Altman, Strong disorder renormalization group primer and the superfluid-insulator transition, C. R. Phys. 14, 725 (2013)

  88. 88.

    F. Hrahsheh, T. Vojta, Disordered bosons in one dimension: from weak to strong randomness criticality, Phys. Rev. Lett. 109, 265303 (2012)

  89. 89.

    E.V.H. Doggen, G. Lemarié, S. Capponi, N. Laflorencie, Weak Versus Strong Disorder Superfluid-Bose Glass Transition in One Dimension, Phys. Rev. B 96, 180202 (2017)

  90. 90.

    A. Del Maestro, B. Rosenow, M. Muller, S. Sachdev, Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition, Phys. Rev. Lett. 101, 035701 (2008)

  91. 91.

    A. Del Maestro, B. Rosenow, J.A. Hoyos, T. Vojta, Dynamical Conductivity at the Dirty Superconductor-Metal Quantum Phase Transition, Phys. Rev. Lett. 105, 145702 (2010)

  92. 92.

    D. Nozadze, T. Vojta, Numerical method for disordered quantum phase transitions in the large-N limit, Phys. Status Solidi 251, 675 (2014)

  93. 93.

    A.K. Ibrahim, T. Vojta, Monte Carlo simulations of a disordered superconductor-metal quantum phase transition, (2018)

  94. 94.

    G. Ramirez, J. Rodriguez-Laguna, G. Sierra, From conformal to volume-law for the entanglement entropy in exponentially deformed critical spin 1/2 chains, J. Stat. Mech. 2014, P10004 (2014)

  95. 95.

    G. Ramirez, J. Rodriguez-Lagunaand, G. Sierra, Entanglement over the rainbow, J. Stat. Mech. 2015, P06002 (2015)

  96. 96.

    J. Rodriguez-Laguna, S.N. Santalla, G. Ramirez, G. Sierra, Entanglement in correlated random spin chains, RNA folding and kinetic roughening, New J. Phys. 18, 073025 (2016)

  97. 97.

    J. Rodriguez-Laguna, J. Dubail, G. Ramirez, P. Calabrese, G. Sierra, More on the rainbow chain: entanglement, space-time geometry and thermal states, J. Phys. A: Math. Theor. 50, 164001 (2017)

  98. 98.

    G. Ramirez, Quantum Entanglement In Inhomogeneous 1D Systems, AIP Conf. Proc. 1950, 030007 (2018)

  99. 99.

    V. Alba, S.N. Santalla, P. Ruggiero, J. Rodriguez-Laguna, P. Calabrese, G. Sierra, Unusual area-law violation in random inhomogeneous systems, (2018)

  100. 100.

    P. Calabrese, J. Cardy, B. Doyon, Entanglement entropyin extended quantum systems, J. Phys. A 42, 500301 (2009)

  101. 101.

    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008)

  102. 102.

    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 643, 1 (2016)

  103. 103.

    C. Holzhey, F. Larsen, F. Wilczek, Geometric and Renormalized Entropy in Conformal Field Theory, Nucl. Phys. B 424, 443 (1994)

  104. 104.

    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003)

  105. 105.

    P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 2004, P06002 (2004)

  106. 106.

    P. Calabrese, A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78, 32329 (2008)

  107. 107.

    R. Vasseur, A. Roshani, S. Haas, H. Saleur, Healing of Defects in Random Antiferromagnetic Spin Chains, EPL 119, 50004 (2017)

  108. 108.

    R. Vasseur, J.E. Moore, multifractal orthogonality catastrophe in 1D Random Quantum critical points, Phys. Rev. B 92, 054203 (2015)

  109. 109.

    J.A. Hoyos, A.P. Vieira, N. Laflorencie, E. Miranda, Correlation amplitude and entanglement entropy in random spin chains, Phys. Rev. B 76, 174425 (2007)

  110. 110.

    G. Refael, J.E. Moore, Entanglement entropy of the random spin-1 Heisenberg chain, Phys. Rev. B 76, 024419 (2007)

  111. 111.

    A. Saguia, M.S. Sarandy, B. Boechat, M.A. Continentino, Entanglement Entropy in Random Quantum Spin-S Chains, Phys. Rev. A 75, 052329 (2007)

  112. 112.

    A. Saguia, M.S. Sarandy, Nonadditive entropy for random quantum spin-S chains, Phys. Lett. A 374, 3384 (2010)

  113. 113.

    F. Iglói, R. Juhász, Exact relationship between the entanglement entropies of XY and quantum Ising chains, Europhys. Lett. 81, 57003 (2008)

  114. 114.

    F. Iglói, Y.C. Lin, H. Rieger, C. Monthus, Finite-size scaling of pseudo-critical point distributions in the random transverse-field Ising chain, Phys. Rev. B 76, 064421 (2007)

  115. 115.

    R. Santachiara, Increasing of entanglement entropy from pure to random quantum critical chains, J. Stat. Mech. 2006, L06002 (2006)

  116. 116.

    J.A. Hoyos, N. Laflorencie, A.P. Vieira, T. Vojta, Protecting clean critical points by local disorder correlations, Europhys. Lett. 93, 30004 (2011)

  117. 117.

    J.C. Getelina, F.C. Alcaraz, J.A. Hoyos, Entanglement properties of correlated random spin chains and similarities with conformal invariant systems, Phys. Rev. B 93, 045136 (2016)

  118. 118.

    R. Juhász, I.A. Kovács, G. Roósz, F. Iglói, Entanglement between random and clean quantum spin chains, J. Phys. A: Math. Theor. 50, 324003 (2017)

  119. 119.

    R. Juhász, J. Entanglement across extended random defects in the XX spin chain, Stat. Mech. 2017, 083107 (2017)

  120. 120.

    R. Juhász, J.M. Oberreuter, Z. Zimborás, Entanglement Entropy of Disordered Quantum Wire Junctions, (2018)

  121. 121.

    A.P. Vieira, Aperiodic quantum XXZ chains: Renormalization-group results, Phys. Rev. B 71, 134408 (2005)

  122. 122.

    F.J.O. Filho, M.S. Faria, A.P. Vieira, Strong disorder renormalization group study of aperiodic quantum Ising chains, J. Stat. Mech. 2012, P03007 (2012)

  123. 123.

    H.L. Casa Grande, N. Laflorencie, F. Alet, A.P. Vieira, Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings, Phys. Rev. B 89, 134408 (2014)

  124. 124.

    A.P. Vieira, J.A. Hoyos, Localization and emergent dimerization in aperiodic quantum spin chains, Phys. Rev. B 98, 104203 (2018)

  125. 125.

    F. Iglói, R. Juhász, Z. Zimborás, Entanglement entropy of aperiodic quantum spin chains, Europhys. Lett. 79, 37001 (2007)

  126. 126.

    R. Juhász, Z. Zimborás, Entanglement entropy in aperiodic singlet phases, J. Stat. Mech. 2017, P04004 (2007)

  127. 127.

    J.A. Hoyos, G. Rigolin, Quantum channels in random spin chains, Phys. Rev. A 74, 062324 (2006)

  128. 128.

    J.C. Getelina, T.R. de Oliveira, J.A. Hoyos, Violation of the Bell inequality in quantum critical random spin-1/2 chains, Phys. Lett. A 382, 2799 (2018)

  129. 129.

    J. Hide, Concurrence in disordered systems, J. Phys. A 45, 115302 (2012)

  130. 130.

    M. Fagotti, P. Calabrese, J.E. Moore, Entanglement spectrum of random-singlet quantum critical points, Phys. Rev. B 83, 045110 (2011)

  131. 131.

    G. Ramirez, J. Rodriguez-Laguna, G. Sierra, Entanglement in low-energy states of the random-hopping model, J. Stat. Mech. 2014, P07003 (2014)

  132. 132.

    H. Tran, N.E. Bonesteel, Valence bond entanglement and fluctuations in random singlet phases, Phys. Rev. B 84, 144420 (2011)

  133. 133.

    T. Devakul, S.N. Majumdar, D.A. Huse, Probability distribution of the entanglement across a cut at an infinite-randomness fixed point, Phys. Rev. B 95, 104204 (2017)

  134. 134.

    G. Torlai, K.D. McAlpine, G. De Chiara, Schmidt gap in random spin chains, Phys. Rev. B 98, 085153 (2018)

  135. 135.

    P. Ruggiero, V. Alba, P. Calabrese, The entanglement negativity in random spin chains, Phys. Rev. B 94, 035152 (2016)

  136. 136.

    F. Alet, S. Capponi, N. Laflorencie, M. Mambrini, Valence Bond Entanglement Entropy, Phys. Rev. Lett. 99, 117204 (2007)

  137. 137.

    Y.C. Lin, A.W. Sandvik, Definitions of entanglement entropy of spin systems in the valence-bond basis, Phys. Rev. B 82, 224414 (2010)

  138. 138.

    Y.-R. Shu, D.-X. Yao, C.-W. Ke, Y.-Ch. Lin, A.W. Sandvik, Properties of the random-singlet phase: from the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016)

  139. 139.

    I.A. Kovács, F. Iglói, Universal logarithmic terms in the entanglement entropy of 2d, 3d and 4d random transverse-field Ising models, EPL 97, 67009 (2012)

  140. 140.

    T. Senthil, S. Sachdev, Higher Dimensional Realizations of Activated Dynamic Scaling at Random Quantum Transitions, Phys. Rev. Lett. 77, 5292 (1996)

  141. 141.

    T. Vojta, J.A. Hoyos, Quantum Phase Transitions on Percolating Lattices, (2007)

  142. 142.

    I.A. Kovács, F. Iglói, J. Cardy, Corner contribution to percolation cluster numbers, Phys. Rev. B 86, 214203 (2012)

  143. 143.

    J. Cardy, I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nucl. Phys. B 300, 377 (1988)

  144. 144.

    I.A. Kovács, F. Iglói, Corner contribution to percolation cluster numbers in three dimensions, Phys. Rev. B. 89, 174202 (2014)

  145. 145.

    J.I. Cirac, F. Verstraete, Renormalization and tensor product states in spin chains and lattices, J. Phys. A: Math. Theor. 42, 504004 (2009)

  146. 146.

    O. Gittsovich, R. Hubener, E. Rico, H.J. Briegel, Local renormalization method for random systems, New J. Phys. 12, 025020 (2010)

  147. 147.

    A.M. Goldsborough, R.A. Romer, Self-assembling tensor networks and holography in disordered spin chains, Phys. Rev. B 89, 214203 (2014)

  148. 148.

    A.M. Goldsborough, G. Evenbly, Entanglement renormalization for disordered systems, Phys. Rev. B 96, 155136 (2017)

  149. 149.

    C. Chatelain, Quantifying and improving the accuracy of the matrix product operator renormalization group of random spin chains, (2018)

  150. 150.

    K. Hyatt, J.R. Garrison, B. Bauer, Extracting entanglement geometry from quantum states, Phys. Rev. Lett. 119, 140502 (2017)

  151. 151.

    R. Nandkishore, D.A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Condens. Matter. Phys. 6, 15 (2015)

  152. 152.

    E. Altman, R. Vosk, Universal dynamics and renormalization in many body localized systems, Ann. Rev. Condens. Matter. Phys. 6, 383 (2015)

  153. 153.

    S.A. Parameswaran, A.C. Potter, R. Vasseur, Eigenstate phase transitions and the emergence of universal dynamics in highly excited states, Ann. Phys. 529, 1600302 (2017)

  154. 154.

    F. Alet, N. Laflorencie, Many-body localization: an introduction and selected topics, C. R. Phys. (2018) DOI:

  155. 155.

    D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Ergodicity, entanglement and many-body localization, (2018)

  156. 156.

    J.Z. Imbrie, V. Ros, A. Scardicchio, Review: local integrals of motion in many-body localized systems, Ann. Phys. 529, 1600278 (2017)

  157. 157.

    L. Rademaker, M. Ortuno, A.M. Somoza, Many-body localization from the perspective of Integrals of Motion, Ann. Phys. 529, 1600322 (2017)

  158. 158.

    D. Pekker, G. Refael, E. Altman, E. Demler, V. Oganesyan, Hilbert-glass transition: new universality of temperature-tuned many-body dynamical Quantum Criticality, Phys. Rev. X 4, 011052 (2014)

  159. 159.

    Y.Z. You, X.L. Qi, C. Xu, Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group, Phys. Rev. B 93, 104205 (2016)

  160. 160.

    C. Monthus, Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models, J. Phys. A: Math. Theor. 51, 115304 (2018)

  161. 161.

    Y. Huang, J.E. Moore, Excited-state entanglement and thermal mutual information in random spin chains, Phys. Rev B, 90 220202 (2014)

  162. 162.

    M. Pouranvari, K. Yang, Entanglement spectrum and entangled modes of highly excited states in random XX spin chains, Phys. Rev. B 92, 245134 (2015)

  163. 163.

    K. Agarwal, E. Demler, I. Martin, 1∕fα noise and generalized diffusion in random Heisenberg spin systems, Phys. Rev. B 92, 184203 (2015)

  164. 164.

    R. Vasseur, A.J. Friedman, S.A. Parameswaran, A.C. Potter, Particle-hole symmetry, many-body localization, and topological edge modes, Phys. Rev. B 93, 134207 (2016)

  165. 165.

    K. Slagle, Y.Z. You, C. Xu, Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group, Phys. Rev. B 94, 014205 (2016)

  166. 166.

    A.J. Friedman, R. Vasseur, A.C. Potter, S.A. Parameswaran, Localization-protected order in spin chains with non-Abelian discrete symmetries, Phys. Rev. B 98, 064203 (2018)

  167. 167.

    R. Vasseur, A.C. Potter, S.A. Parameswaran, Quantum criticality of hot random spin chains, Phys. Rev. Lett. 114, 217201 (2015)

  168. 168.

    B. Kang, A.C. Potter, R. Vasseur, Universal crossover from ground state to excited-state quantum criticality, Phys. Rev. B 95, 024205 (2017)

  169. 169.

    C. Monthus, Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, J. Stat. Mech. 2016, 033101 (2016)

  170. 170.

    C. Monthus, Random transverse field spin-glass model on the cayley tree: phase transition between the two many-body-localized phases, J. Stat. Mech. 2017, 123304 (2017)

  171. 171.

    R. Vosk, E. Altman, Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett. 110, 067204 (2013)

  172. 172.

    R. Vosk, E. Altman, Dynamical quantum phase transitions in random spin chains, Phys. Rev. Lett. 112, 217204 (2014)

  173. 173.

    M. Bukov, L.D’Alessio, A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering, Adv. Phys. 64, 139 (2015)

  174. 174.

    C. Monthus, Strong disorder renormalization for the dynamics of many-body-localized systems: iterative elimination of the fastest degree of freedom via the Floquet expansion, J. Phys. A: Math. Theor. 51, 275302 (2018)

  175. 175.

    Y. Huang, Entanglement dynamics in critical random quantum Ising chain with perturbations, Ann. Phys. 380, 224 (2017)

  176. 176.

    M. Heyl, M. Vojta, Nonequilibrium dynamical renormalization group: dynamical crossover from weak to infinite randomness in the transverse-field Ising chain, Phys. Rev. B 92, 104401 (2015)

  177. 177.

    P. Hauke, M. Heyl, Many-body localization and quantum ergodicity in disordered long-range Ising models, Phys. Rev. B 92, 134204 (2015)

  178. 178.

    G. De Chiara, S. Montangero, P. Calabrese, R. Fazio, Entanglement entropy dynamics in Heisenberg chains, J. Stat. Mech. 2006, L03001 (2006)

  179. 179.

    F. Iglói, Z. Szatmári, Y.-C. Lin, Entanglement entropy dynamics of disordered quantum spin chains, Phys. Rev. B 85, 094417 (2012)

  180. 180.

    G.C. Levine, M.J. Bantegui, J.A. Burg, Full counting statistics in a disordered free fermion system, Phys. Rev. B 86, 174202 (2012)

  181. 181.

    J.H. Bardarson, F. Pollmann, J.E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109, 017202 (2012)

  182. 182.

    Y. Zhao, F. Andraschko, J. Sirker, Entanglement entropy of disordered quantum chains following a global quench, Phys. Rev. B 93, 205146 (2016)

  183. 183.

    G. Roósz, Y.C. Lin, F. Iglói, Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder, New J. Phys. 19, 023055 (2017)

  184. 184.

    J. Herbrych, J. Kokalj, P. Prelovsek, Local spin relaxation within the random Heisenberg chain, Phys. Rev. Lett. 111, 147203 (2013)

  185. 185.

    Y.R. Shu, M. Dupont, D.X. Yao, S. Capponi, A.W. Sandvik, Dynamical properties of the S=1/2 random Heisenberg chain, Phys. Rev. B 97, 104424 (2018)

  186. 186.

    F. Iglói, G. Roósz, Y.C. Lin, Nonequilibrium quench dynamics in quantum quasicrystals, New J. Phys. 15, 023036 (2013)

  187. 187.

    G. Roósz, U. Divakaran, H. Rieger, F. Iglói, Non-equilibrium quantum relaxation across a localization-delocalization transition, Phys. Rev. B 90, 184202 (2014)

  188. 188.

    U. Divakaran, Sudden quenches in quasiperiodic Ising model, Phys. Rev. E 98, 032110 (2018)

  189. 189.

    P. Mason, A.M. Zagoskin, J.J. Betouras, Time-dependent real-space renormalization-group approach: application to an adiabatic random quantum Ising model, (2017)

  190. 190.

    C. Monthus, T. Garel, Many-body localization transition in a lattice model of interacting fermions: statistics of renormalized hoppings in configuration space, Phys. Rev. B 81, 134202 (2010)

  191. 191.

    R. Vosk, D.A. Huse, E. Altman, Theory of the many-body localization transition in one dimensional systems, Phys. Rev. X 5, 031032 (2015)

  192. 192.

    A.C. Potter, R. Vasseur, S.A. Parameswaran, Universal properties of many-body delocalization transitions, Phys. Rev. X 5, 031033 (2015)

  193. 193.

    P.T. Dumitrescu, R. Vasseur, A.C. Potter, Scaling Theory of Entanglement at the Many-Body Localization Transition, Phys. Rev. Lett. 119, 110604 (2017)

  194. 194.

    L. Zhang, B. Zhao, T. Devakul, D.A. Huse, Many-body localization phase transition: A simplified strong-randomness approximate renormalization group, Phys. Rev. B 93, 224201 (2016)

  195. 195.

    A. Goremykina, R. Vasseur, M. Serbyn, Analytically solvable renormalization group for the many-body localization transition, (2018)

  196. 196.

    S. Kehrein,The flow equation approach to many-particle systems (Springer-Verlag, Berlin, 2006)

  197. 197.

    L. Rademaker, M. Ortuno, Explicit local integrals of motion for the many-body localized state, Phys. Rev. Lett. 116, 010404 (2016)

  198. 198.

    C. Monthus, Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, J. Phys. A: Math. Theor. 49, 305002 (2016)

  199. 199.

    D. Pekker, B.K. Clark, V. Oganesyan, G. Refael, Fixed points of Wegner-Wilson flows and many-body localization, Phys. Rev. Lett. 119, 075701 (2017)

  200. 200.

    S. Savitz, G. Refael, Stable Uunitary integrators for the numerical implementation of continuous unitary transformations, Phys. Rev. B 96, 115129 (2017)

  201. 201.

    S.J. Thomson, M. Schiro, Time Evolution of many-body localized systems with the flow equation approach, Phys. Rev. B 97, 060201 (2018)

  202. 202.

    R. Moessner, S.L. Sondhi, Equilibration and order in quantum floquet matter, Nat. Phys. 13, 424 (2017)

  203. 203.

    C. Monthus, Periodically driven random quantum spin chains: real-space renormalization for floquet localized phases, J. Stat. Mech. 2017, 073301 (2017)

  204. 204.

    W. Berdanier, M. Kolodrubetz, S.A. Parameswaran, R. Vasseur, Floquet quantum criticality, PNAS 115, 9491 (2018)

  205. 205.

    W. Berdanier, M. Kolodrubetz, S.A. Parameswaran, R. Vasseur, Strong-disorder renormalization group for periodically driven systems, (2018)

  206. 206.

    U. Weiss,Quantum dissipative systems, 2nd edn. (World Scientific, Singapore, 1999)

  207. 207.

    H.P. Breuer, F. Petruccione,The theory of open quantum systems (Oxford University Press, Oxford, 2002)

  208. 208.

    A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1 (1987)

  209. 209.

    G. Schehr, H. Rieger, Strong randomness fixed point in the dissipative random transverse field Ising model, Phys. Rev. Lett. 96, 227201 (2006)

  210. 210.

    G. Schehr, H. Rieger, Finite temperature behavior of strongly disordered quantum magnets coupled to a dissipative bath, J. Stat. Mech. 2008, P04012 (2008)

  211. 211.

    J.A. Hoyos, T. Vojta, Dissipation effects in percolating quantum Ising magnets, Physica B 403, 1245 (2008)

  212. 212.

    J.A. Hoyos, T. Vojta, Theory of smeared quantum phase transitions, Phys. Rev. Lett. 100, 240601 (2008)

  213. 213.

    T. Vojta, J.A. Hoyos, Smeared quantum phase transition in the dissipative random quantum Ising model, Physica E 42, 383 (2010)

  214. 214.

    J.A. Hoyos, T. Vojta, Dissipation effects in random transverse-field Ising chains, Phys. Rev. B 85, 174403 (2012)

  215. 215.

    M. Al-Ali, T. Vojta, Monte-Carlo simulations of the dissipative random transverse-field Ising chain, (2013)

  216. 216.

    J.A. Hoyos, C. Kotabage, T. Vojta, Effects of dissipation on a quantum critical point with disorder, Phys. Rev. Lett. 99, 230601 (2007)

  217. 217.

    T. Vojta, C. Kotabage, J.A. Hoyos, Infinite-randomness quantum critical points induced by dissipation, Phys. Rev. B 79, 024401 (2009)

  218. 218.

    T. Vojta, J.A. Hoyos, P. Mohan, R. Narayanan, Influence of superohmic dissipation on a disordered quantum critical point, J. Phys.: Condens. Matter 23, 094206 (2011)

  219. 219.

    C. Monthus, Boundary-driven Lindblad dynamics of random quantum spin chains: strong disorder approach for the relaxation, the steady state and the current, J. Stat. Mech. 2017, 043303 (2017)

  220. 220.

    W. De Roeck, A. Dhar, F. Huveneers, M. Schutz, Step Density Profiles in Localized Chains, J. Stat. Phys. 167, 1143 (2017)

  221. 221.

    C. Monthus, Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the Non-Equilibrium-Steady-State, J. Stat. Mech. 2017, 043302 (2017)

  222. 222.

    C. Chatelain, Diverging conductance at the contact between random and pure quantum XX spin chains, J. Stat. Mech. 2017, 113301 (2017)

  223. 223.

    F. Evers, A.D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008)

  224. 224.

    H.J. Mard, J.A. Hoyos, E. Miranda, V. Dobrosavljevic, Strong-disorder renormalization-group study of the one-dimensional tight-binding model, Phys. Rev. B 90, 125141 (2014)

  225. 225.

    H.J. Mard, J.A. Hoyos, E. Miranda, V. Dobrosavljevic, Strong-disorder approach for the Anderson localization transition, Phys. Rev. B 96, 045143 (2017)

  226. 226.

    H. Aoki, Real-space renormalisation-group theory for Anderson localisation: decimation method for electron systems, J. Phys. C: Solid State Phys. 13, 3369 (1980)

  227. 227.

    H. Aoki, Decimation method of real-space renormalization for electron systems with application to random systems, Physica A 114, 538 (1982)

  228. 228.

    C. Monthus, T. Garel, Statistics of renormalized on-site energies and renormalized hoppings for Anderson localization models in dimensions d = 2 and d = 3, Phys. Rev. B 80, 024203 (2009)

  229. 229.

    E. Tarquini, G. Biroli, M. Tarzia, Critical properties of the Anderson localization transition and the high dimensional limit, Phys. Rev. B 95, 094204 (2017)

  230. 230.

    S. Johri, R.N. Bhatt, Large disorder renormalization group study of the Anderson model of localization, Phys. Rev. B 90, 060205(R) (2014)

  231. 231.

    R.N. Bhatt, S. Johri, Rare fluctuation effects in the Anderson model of localization, Int. J. Mod. Phys. Conf. Ser. 11, 79 (2012)

  232. 232.

    C. Monthus, T. Garel, Random cascade models of multifractality: real-space renormalization and travelling-waves, J. Stat. Mech. 2010, P06014 (2010)

  233. 233.

    C. Monthus, T. Garel, A critical Dyson hierarchical model for the Anderson localization transition, J. Stat. Mech. 2011, P05005 (2011)

  234. 234.

    V.L. Quito, P. Titum, D. Pekker, G. Refael, Localization transition in one dimension using Wegner flow equations, Phys. Rev. B 94, 104202 (2016)

  235. 235.

    T.E. Harris, Contact interactions on a lattice, Ann. Prob. 2, 969 (1974)

  236. 236.

    T.M. Liggett,Stochastic interacting systems: contact, voter, and exclusion processes (Springer, Berlin, 2005)

  237. 237.

    T. Vojta, A. Farquhar, J. Mast, Infinite-randomness critical point in the two-dimensional disordered contact process, Phys. Rev. E 79, 011111 (2009)

  238. 238.

    T. Vojta, Monte-Carlo simulations of the clean and disordered contact process in three dimensions, Phys. Rev. E 86, 051137 (2012)

  239. 239.

    J.A. Hoyos, Weakly disordered absorbing-state phase transitions, Phys. Rev. E 78, 032101 (2008)

  240. 240.

    R. Juhász, Distribution of dynamical quantities in the contact process, random walks, and quantum spin chains in random environments, Phys. Rev. E 89, 032108 (2014)

  241. 241.

    R. Juhász, Disordered contact process with asymmetrics preading, Phys. Rev. E 87, 022133 (2013)

  242. 242.

    T. Vojta, J. Igo, J.A. Hoyos, Rare regions and Griffiths singularities at a clean critical point: the five-dimensional disordered contact process, Phys. Rev. E 90, 012139 (2014)

  243. 243.

    T. Vojta, J.A. Hoyos, Criticality and quenched disorder: rare regions vs. Harris criterion, Phys. Rev. Lett. 112, 075702 (2014)

  244. 244.

    A.K. Ibrahim, H. Barghathi, T. Vojta, Enhanced rare region effects in the contact process with long-range correlated disorder, Phys. Rev. E 90, 042132 (2014)

  245. 245.

    H. Barghathi, D. Nozadze, T. Vojta, Contact process on generalized Fibonacci chains: infinite-modulation criticality and double-log periodic oscillations, Phys. Rev. E 89, 012112 (2014)

  246. 246.

    M.A. Munoz, R. Juhász, C. Castellano, G. Ódor, Griffiths Phases on Complex Networks, Phys. Rev. Lett. 105, 128701 (2010)

  247. 247.

    H. Barghathi, T. Vojta, Random fields at a nonequilibrium phase transition, Phys. Rev. Lett. 109, 170603 (2012)

  248. 248.

    H. Barghathi, T. Vojta, Random field disorder at an absorbing state transition in one and two dimensions, Phys. Rev. E 93, 022120 (2016)

  249. 249.

    R. Juhász, I.A. Kovács, F. Iglói, Long-range epidemic spreading in a random environment, Phys. Rev. E 91, 032815 (2015)

  250. 250.

    R. Juhász, I.A. Kovács, Infinite randomness critical behavior of the contact process on networks with long-range connections, J. Stat. Mech. 2013, P06003 (2013)

  251. 251.

    T. Vojta, J.A. Hoyos, Infinite-noise criticality: nonequilibrium phase transitions in fluctuating environments, Europhys. Lett. 112, 30002 (2015)

  252. 252.

    F. Vazquez, J.A. Bonachela, C. Lopez, M.A. Munoz, Temporal Griffiths Phases, Phys. Rev. Lett. 106, 235702 (2011)

  253. 253.

    H. Barghathi, J.A. Hoyos, T. Vojta, Contact process with temporal disorder, Phys. Rev. E 94, 022111 (2016)

  254. 254.

    C.E. Fiore, M.M. de Oliveira, J.A. Hoyos, Temporal disorder in discontinuous non-equilibrium phase transitions: general results, Phys. Rev. E 98, 032129 (2018)

  255. 255.

    T. Vojta, R. Dickman Spatio-temporal generalization of the Harris criterion and its application to diffusive disorder, Phys. Rev. E 93, 032143 (2016)

  256. 256.

    P. Le Doussal, The Sinai model in the presence of dilute absorbers, J. Stat. Mech. 2009, P07032 (2009)

  257. 257.

    R. Juhász, Competition between quenched disorder and long-range connections: a numerical study of diffusion, Phys. Rev. E 85, 011118 (2012)

  258. 258.

    R. Juhász, Random walks in a random environment on a strip: a renormalization group approach, J. Phys. A: Math. Theor. 41, 315001 (2008)

  259. 259.

    R. Juhász, F. Iglói, Anomalous diffusion in disordered multi-channel systems, J. Stat. Mech. 2010, P03012 (2010)

  260. 260.

    R. Juhász, The effect of asymmetric disorder on the diffusion in arbitrary networks, Europhys. Lett. 98, 30001 (2012)

  261. 261.

    C. Monthus, T. Garel, Random walk in two-dimensional self-affine random potentials: Strong-disorder renormalization approach, Phys. Rev. E 81, 011138 (2010)

  262. 262.

    C. Monthus, T. Garel, Non equilibrium dynamics of disordered systems: understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space, J. Phys. A: Math. Theor. 41, 255002 (2008)

  263. 263.

    C. Monthus, T. Garel, Non-equilibrium dynamics of finite-dimensional disordered systems : RG flow towards an “infinite disorder” fixed point at large times, J. Stat. Mech. 2008, P07002 (2008)

  264. 264.

    C. Monthus, T. Garel, Equilibrium of disordered systems: constructing the appropriate valleys in each sample via strong disorder renormalization in configuration space, J. Phys. A: Math. Theor. 41, 375005 (2008)

  265. 265.

    C. Monthus, T. Garel, Driven interfaces in random media at finite temperature: is there an anomalous zero-velocity phase at small external force? Phys. Rev. E 78, 041133 (2008)

  266. 266.

    S. Bo, A. Celani, Multiple-scale stochastic processes: decimation, averaging and beyond, Phys. Rep. 670, 1 (2017)

  267. 267.

    C. Monthus, T. Garel, Statistics of first-passage times in disordered systems using backward master equations and their exact renormalization rules, J. Phys. A: Math. Theor. 43, 095001 (2010)

  268. 268.

    C. Monthus, T. Garel, Dynamics of Ising models near zero temperature: real space renormalization approach, J. Stat. Mech. 2013, P02037 (2013)

  269. 269.

    C. Monthus, T. Garel, Dynamical barriers for the random ferromagnetic Ising model on the Cayley tree: traveling-wave solution of the real space renormalization flow, J. Stat. Mech. 2013, P05012 (2013)

  270. 270.

    C. Monthus, T. Garel, Dynamical Barriers in the Dyson Hierarchical model via Real Space Renormalization, J. Stat. Mech. 2013, P02023 (2013)

  271. 271.

    C. Monthus, Low-temperature dynamics of long-ranged spin-glasses: full hierarchy of relaxation times via real-space renormalization, J. Stat. Mech. 2014, P08009 (2014)

  272. 272.

    C. Monthus, Real-space renormalization for the finite temperature statics and dynamics of the Dyson long-ranged ferromagnetic and spin-glass models, J. Stat. Mech. 2016, 043302 (2016)

  273. 273.

    F. J. Dyson, The dynamics of a disordered linear chain, Phys. Rev. 92, 1331 (1953)

  274. 274.

    C. Monthus, T. Garel, Anderson localization of phonons in dimension d=1,2,3: finite-size properties of the inverse participation ratios of eigenstates, Phys. Rev. B 81, 224208 (2010)

  275. 275.

    M.B. Hastings, Random vibrational networks and the renormalization group, Phys. Rev. Lett. 90, 148702 (2003)

  276. 276.

    A. Amir, Y. Oreg, Y. Imry, Localization, Anomalous diffusion, and slow relaxations: a random distance matrix approach, Phys. Rev. Lett. 105, 070601 (2010)

  277. 277.

    C. Monthus, T. Garel, Random elastic networks: strong disorder renormalization approach, J. Phys. A: Math. Theor. 44, 085001 (2011)

  278. 278.

    S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000)

  279. 279.

    A. Pikovsky, M. Rosenblum, J. Kurths,Synchronization: A universal concept in nonlinear science (Cambridge University Press, New York, 2001)

  280. 280.

    A. Pikovsky, M. Rosenblum, Dynamics of globally coupled oscillators: progress and perspectives, Chaos 25, 097616 (2015)

  281. 281.

    O. Kogan, J.L. Rogers, M.C. Cross, G. Refael, Renormalization group approach to oscillator synchronization, Phys. Rev. E 80, 036206 (2009)

  282. 282.

    T.E. Lee, G. Refael, M.C. Cross, O. Kogan, J.L. Rogers, Universality in the one-dimensional chain of phase-coupled oscillators, Phys. Rev. E 80, 046210 (2009)

  283. 283.

    P. Mohan, R. Narayanan, T. Vojta, Infinite randomness and quantum Griffiths effects in a classical system: the randomly layered Heisenberg magnet, Phys. Rev. B 81, 144407 (2010)

  284. 284.

    C. Monthus, T. Garel, Random wetting transition on the Cayley tree: a disordered first-order transition with two correlation length exponents, J. Phys. A: Math. Theor. 42, 165003 (2009)

  285. 285.

    C. Monthus, Strong Disorder Renewal Approach to DNA denaturation and wetting: typical and large deviation properties of the free energy, J. Stat. Mech. 2017, 013301 (2017)

  286. 286.

    C. Monthus, One-dimensional Ising spin-glass with power-law interaction : real-space renormalization at zerotemperature, J. Stat. Mech. 2014, P06015 (2014)

  287. 287.

    C. Monthus, Fractal dimension of spin glasses interfaces in dimensions d=2 and d=3 via strong disorder renormalization at zero temperature, Fractals 23, 1550042 (2015)

  288. 288.

    W. Wang, M.A. Moore, H.G. Katzgraber, The fractal dimension of interfaces in Edwards-Anderson and Long-range Ising spin glasses: determining the applicability of different theoretical descriptions, Phys. Rev. Lett. 119, 100602 (2017)

  289. 289.

    W. Wang, M.A. Moore, H.G. Katzgraber, Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions, Phys. Rev. E 97, 032104 (2018)

  290. 290.

    G. Schehr, P. Le Doussal, Extreme value statistics from the real space renormalization group: brownian motion, Bessel processes and continuous time random walks, J. Stat. Mech. 2010, P01009 (2010)

  291. 291.

    G. Györgyi, N.R. Moloney, K. Ozogány, Z. Rácz, M. Droz, Renormalization-group theory for finite-size scaling in extreme statistics, Phys. Rev. E 81, 041135 (2010)

  292. 292.

    E. Bertin, G. Györgyi, Renormalization flow in extreme value statistics, J. Stat. Mech. 2010, P08022 (2010)

  293. 293.

    I. Calvo, J.C. Cuchí, J.G. Esteve, F. Falceto, Extreme-value distributions and renormalization group, Phys. Rev. E 86, 041109 (2012)

  294. 294.

    F. Angeletti, E. Bertin, P. Abry, Renormalization flow for extreme value statistics of random variables raised to a varying power, J. Phys. A: Math. Theor. 45, 115004 (2012)

  295. 295.

    R. Juhász, A non-conserving coagulation model with extremal dynamics, J. Stat. Mech. 2009, P03033 (2009)

Download references

Author information

Correspondence to Ferenc Iglói or Cécile Monthus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iglói, F., Monthus, C. Strong disorder RG approach – a short review of recent developments. Eur. Phys. J. B 91, 290 (2018).

Download citation


  • Statistical and Nonlinear Physics