Advertisement

Monte Carlo simulation of equilibrium and dynamic phase transition properties of an Ising bilayer

  • Yusuf Yüksel
Regular Article
  • 4 Downloads

Abstract

Magnetic properties of an Ising bilayer system defined on a honeycomb lattice with non-magnetic interlayers which interact via an indirect exchange coupling have been investigated by Monte Carlo simulation technique based on the Metropolis algorithm. Equilibrium properties of the system exhibit ferrimagnetism with P-, N- and Q- type behaviors. Compensation phenomenon suddenly disappears with decreasing strength of indirect ferrimagnetic interlayer exchange coupling. Qualitative properties are in a good agreement with those obtained by effective field theory. In order to investigate the stochastic dynamics of kinetic Ising bilayer, we have introduced two different types of dynamic magnetic fields, namely a square wave, and a sinusoidally oscillating magnetic field form. For both field types, compensation point and critical temperature decrease with increasing amplitude and field period. Dynamic ferromagnetic region in the presence of square wave magnetic field is narrower than that obtained for sinusoidally oscillating magnetic field when the amplitude and the field period are the same for each type of dynamic magnetic fields.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    K.S. Novoselov et al., Proc. Natl Acad. Sci. USA 102, 10451 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    P.R. Wallace et al., Phys. Rev. 71, 622 (1947) ADSCrossRefGoogle Scholar
  3. 3.
    J.W. McClure et al., Phys. Rev. 104, 666 (1956) ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958) ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    K.S. Novoselov et al., Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    C.C. Price, N.B. Perkins, Phys. Rev. Lett. 109, 187201 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    C.C. Price, N.B. Perkins, Phys. Rev. B 88, 024410 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    S. Sarikurt, Y. Kadioglu, F. Ersan, E. Vatansever, O. Üzengi Aktürk, Y. Yüksel, Ü. Akinci, E. Aktürk, Phys. Chem. Chem. Phys. 20, 997 (2018) CrossRefGoogle Scholar
  12. 12.
    F. Ersan, E. Vatansever, S. Sarikurt, Y. Yüksel, Y. Kadioglu, H. D. Ozaydin, O. Uzengi Aktürk, Ü. Akinci, arXiv:https://doi.org/1804.01560v1 (2018)
  13. 13.
    T. Horiguchi et al., Phys. Lett. 113 A, 425 (1986) ADSCrossRefGoogle Scholar
  14. 14.
    V. Urumov et al., J. Phys. C: Solid State Phys. 20, L 875 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    V. Urumov et al., J. Phys.: Condens. Matter 1, 1159 (1989) ADSGoogle Scholar
  16. 16.
    V. Urumov et al., J. Phys.: Condens. Matter 2, 2497 (1990) ADSGoogle Scholar
  17. 17.
    V. Urumov et al., J. Phys.: Condens. Matter 1, 7037 (1989) ADSGoogle Scholar
  18. 18.
    Z.L. Wang, Z.-Y. Li, J. Phys.: Condens. Matter 2, 8615 (1990) ADSGoogle Scholar
  19. 19.
    R. Masrour, A. Jabar, J. Comput. Electron. 16, 12 (2017) CrossRefGoogle Scholar
  20. 20.
    A. Mhirech, S. Aouini, A. Alaoui-Ismaili, L. Bahmad, J. Supercond. Nov. Magn. 30, 3189 (2017) CrossRefGoogle Scholar
  21. 21.
    W. Jiang, Y. Y. Yang, A. B. Guo, Carbon 95, 190 (2015) CrossRefGoogle Scholar
  22. 22.
    J.P. Santos, F.C. Sá Barreto, J. Magn. Magn. Mater. 439, 114 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    T. Kaneyoshi et al., J. Supercond. Nov. Magn.,  https://doi.org/10.1007/s10948-018-4606-y
  24. 24.
    M. Acharyya et al., Phys. Rev. E 59, 218 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    G.M. Buendia, P.A. Rikvold, Phys. Rev. E 78, 051108 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    A. Berger, O. Idigoras, P. Vavassori, Phys. Rev. Lett. 111, 190602 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Yüksel et al., Phys. Rev. E 91, 032149 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    E. Vatansever, N.G. Fytas, Phys. Rev. E 97, 012122 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    B.K. Chakrabarti, M. Acharyya, Rev. Mod. Phys. 71, 847 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    T. Kaneyoshi et al., Acta Phys. Pol. A 83, 703 (1993) CrossRefGoogle Scholar
  31. 31.
    J. Strecka, M. Jascur, Acta Phys. Slovaca 65, 235 (2015) Google Scholar
  32. 32.
    Y. Yüksel, U. Akinci, J. Phys. Chem. Solids 112, 143 (2018) ADSCrossRefGoogle Scholar
  33. 33.
    M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, New York, USA, 1999) Google Scholar
  34. 34.
    K. Binder et al., Monte Carlo Methods in Statistical Physics (Springer-Verlag, Berlin, Heidelberg, 1979) Google Scholar
  35. 35.
    S.Y. Kim et al., Phys. Lett. A 358, 245 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    S. Morita, S. Suzuki, J. Stat. Phys. 162, 123 (2016) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R.J.C. Booth, L. Hua, J.W. Tucker, C.M. Care, I. Halliday, J. Magn. Magn. Mater. 128, 117 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    J.W. Tucker et al., J. Magn. Magn. Mater. 87, 16 (1990) ADSCrossRefGoogle Scholar
  39. 39.
    L. Neél et al., Ann. Phys. 3, 137 (1948) CrossRefGoogle Scholar
  40. 40.
    J. Strečka et al., Physica A 360, 379 (2006), and references therein ADSCrossRefGoogle Scholar
  41. 41.
    T. Tomé, M.J. de Oliveira, Phys. Rev. A 41, 4251 (1990) ADSCrossRefGoogle Scholar
  42. 42.
    E. Vatansever, H. Polat, J. Magn. Magn. Mater. 392, 42 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDokuz Eylül UniversityİzmirTurkey

Personalised recommendations