Advertisement

Physical properties of niobium-based intermetallics (Nb3B; B = Os, Pt, Au): a DFT-based ab-initio study

  • Mosammat I. Naher
  • Fahmida Parvin
  • Azharul K. M. A. Islam
  • Saleh H. Naqib
Regular Article
  • 19 Downloads

Abstract

Structural, elastic and electronic band structure properties of A-15 type Nb-based intermetallic compounds Nb3B (B = Os, Pt, Au) have been revisited using first principles calculations based on the density functional theory (DFT). All these show excellent agreement with previous reports. More importantly, electronic bonding, charge density distribution and Fermi surface features have been studied in detail for the first time. Vickers hardness of these compounds is also calculated. The Fermi surfaces of Nb3B contain both hole- and electron-like sheets, the features of which change systematically as one move from Os to Au. The electronic charge density distribution implies that Nb3Os, Nb3Pt and Nb3Au have a mixture of ionic and covalent bondings with a substantial metallic contribution. The charge transfer between the atomic species in these compounds has been explained via the Mulliken bond population analysis and the Hirshfeld population analysis. The bonding properties show a good correspondence to the electronic band structure derived electronic density of states (DOS) near the Fermi level. Debye temperature of Nb3B (B = Os, Pt, Au) has been estimated from the elastic constants and shows a systematic behavior as a function of the B atomic species. A good correspondence among the elastic, electronic and charge density distribution properties are found. The superconducting transition temperature is found to be dominated by the electronic density of states at the Fermi level. We have discussed possible implications of the results obtained in this study in details in this paper.

Keywords

Computational Methods 

References

  1. 1.
    W. Hume-Rothery, J. Inst. Met. 35, 209 (1925) Google Scholar
  2. 2.
    J. Liang, D. Fan, P. Jiang, H. Liu, W. Zhao, Intermetallics 87, 27 (2017) CrossRefGoogle Scholar
  3. 3.
    T. An, F. Qin, J. Electron. Packag. 138, 011002 (2015) CrossRefGoogle Scholar
  4. 4.
    H. Lu, N. Zou, X. Zhao, J. Shen, X. Lu, Y. He, Intermetallics 88, 91 (2017) CrossRefGoogle Scholar
  5. 5.
    Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez, T. Mohri, J. Alloys Compd. 354, 202 (2003) CrossRefGoogle Scholar
  6. 6.
    M. Rajagopalan, M. Sundareswari, J. Alloys Compd. 379, 8 (2004) CrossRefGoogle Scholar
  7. 7.
    Y. Terada, Platin. Met. Rev. 52, 208 (2008) CrossRefGoogle Scholar
  8. 8.
    L. Mohammedi, B. Daoudi, A. Boukraa, Comput. Condens. Matter 2, 11 (2015) CrossRefGoogle Scholar
  9. 9.
    J. Magnien, G. Khatibi, M. Lederer, H. Ipser, Mater. Sci. Eng.: A 673, 541 (2016) CrossRefGoogle Scholar
  10. 10.
    H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng.: A 358, 134 (2003) CrossRefGoogle Scholar
  11. 11.
    K.S. Kim, S.H. Hun, K. Suganuma, J. Alloys Compd. 352, 226 (2003) CrossRefGoogle Scholar
  12. 12.
    M.H.F. Sluiter, Calphad 30, 357 (2006) CrossRefGoogle Scholar
  13. 13.
    K. Tachikawa, Fusion Eng. Des. 81, 2401 (2006) CrossRefGoogle Scholar
  14. 14.
    A. Godeke, B. Haken et al., Supercond. Sci. Technol. 19, R100 (2006) CrossRefGoogle Scholar
  15. 15.
    R. Boscencu, M. Ilie, R. Socoteanu, Int. J. Mol. Sci. 12, 5552 (2011) CrossRefGoogle Scholar
  16. 16.
    H. Ohno, T. Shinoda, Y. Oya-Seimiya, J. Jpn. Inst. Met. 68, 769 (2004) CrossRefGoogle Scholar
  17. 17.
    H. Kumakura, H. Kitaguchi, A. Matsumoto et al., Supercond. Sci. Technol. 18, 147 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    A. Godeke, M.C. Jewell, C.M. Fischer et al., J. Appl. Phys. 97, 1 (2005) CrossRefGoogle Scholar
  19. 19.
    P.J. Lee, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 15, 3474 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    C.V. Renaud, T. Wong, L.R. Motowidlo, IEEE Trans. Appl. Supercond. 15, 3418 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    S. Haindl, M. Eisterer, R. Muller et al., IEEE Trans. Appl. Supercond. 15, 3414 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    T. Takeuchi, M. Kosuge, N. Banno et al., Supercond. Sci. Technol. 18, 985 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Skripov, L.S. Voyevodina, R. Hempelmann, Phys. Rev. B 73, 1 (2006) CrossRefGoogle Scholar
  24. 24.
    C.D. Hawes, P.J. Lee, D.C. Larbalestier, Supercond. Sci. Technol. 19, S27 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Deambrosis, G. Keppel et al., Physica C 441, 108 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    A. Godeke, Supercond. Sci. Technol. 19, R68 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    G.R. Stewart, Physica C 514, 28 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    D. Dew-Hughes, Cryogenics 15, 435 (1975) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Ding, S. Deng, Y. Zhao, J. Mod. Transp. 22, 183 (2014) CrossRefGoogle Scholar
  30. 30.
    C. Paduani, Braz. J. Phys. 37, 1073 (2007) ADSGoogle Scholar
  31. 31.
    B.M. Klein, L.L. Boyer, D.A. Papconstantopoulos, Phys. Rev. Lett. 42, 530 (1979) ADSCrossRefGoogle Scholar
  32. 32.
    E.Z. Kurmaev, F. Werfel, O. Brümmer, R. Flükiger, Solid State Commun. 21, 39 (1977) CrossRefGoogle Scholar
  33. 33.
    E.Z. Kurmaev, V.P. Belash, R. Flukiger, A. Junod, Solid State Commun. 16, 1139 (1975) ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Pollak, C.C. Tsuei, R.W. Johnson, Solid State Commun. 23, 879 (1977) ADSCrossRefGoogle Scholar
  35. 35.
    A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983) ADSCrossRefGoogle Scholar
  36. 36.
  37. 37.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002) ADSGoogle Scholar
  38. 38.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992) CrossRefGoogle Scholar
  43. 43.
    F.D. Murnaghan, Finite Deformation of an Elastic Solid (John Wiley, New York, 1951) Google Scholar
  44. 44.
    D. Sanchez-Portal, E. Artacho, J.M. Soler, Solid State Commun. 95, 685 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996) ADSCrossRefGoogle Scholar
  46. 46.
    S. Geller Acta Crystallogr. 9, 885 (1956) CrossRefGoogle Scholar
  47. 47.
    S.V. Reddy, S.V. Suryanarayana, J. Mater. Sci. Lett. 3, 763 (1984) CrossRefGoogle Scholar
  48. 48.
    P.A. Beck (ed.), Electronic Structure and Alloy Chemistry of the Transition Elements (Interscience Publishers, New York, 1963) Google Scholar
  49. 49.
    M.V. Nevit, in Intermetallics Compounds, edited by J.H. Westbrook (R.E. Krieger Publishing Co., Huntington, NY, 1977) Google Scholar
  50. 50.
    C. Paduani, Solid State Commun. 144, 352 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 68, 184108 (2003) ADSCrossRefGoogle Scholar
  52. 52.
    A. Sari, G. Merad, H. Si Abdelkader, Comput. Mater. Sci. 96, 348 (2015) CrossRefGoogle Scholar
  53. 53.
    M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Metall. 18, 951 (1984) CrossRefGoogle Scholar
  54. 54.
    M.A. Ali, M.M. Hossain, M.A. Hossain, M.T. Nasir, M.M. Uddin, M.Z. Hasan, A.K.M.A. Islam, S.H. Naqib, J. Alloys Compd. 743, 146 (2018) CrossRefGoogle Scholar
  55. 55.
    J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001) ADSCrossRefGoogle Scholar
  56. 56.
    Q.M. Hu, R. Yang, Curr. Opin. Solid State Mater. Sci. 10, 19 (2006) ADSCrossRefGoogle Scholar
  57. 57.
    B.Y. Tang, W.Y. Yu, X.Q. Zeng, W.J. Ding, M.F. Gray, Mater. Sci. Eng. A 489, 444 (2008) CrossRefGoogle Scholar
  58. 58.
    S.F. Pugh, Philos. Mag. 45, 43 (1954) CrossRefGoogle Scholar
  59. 59.
    V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Physica B 405, 4615 (2010) ADSCrossRefGoogle Scholar
  60. 60.
    W. Feng, S. Cui, Can. J. Phys. 92, 1652 (2014) ADSCrossRefGoogle Scholar
  61. 61.
    Z. Sun, D. Music, R. Ahuja, J.M. Schneider, Phys. Rev. B 71, 193402 (2005) ADSCrossRefGoogle Scholar
  62. 62.
    L. Vitos, P.A. Korzhavyi, B. Johansson, Nat. Mater. 2, 25 (2003) ADSCrossRefGoogle Scholar
  63. 63.
    R.C. Lincoln, K.M. Koliwad, P.B. Ghate, Phys. Rev. 157, 463 (1967) ADSCrossRefGoogle Scholar
  64. 64.
    K.J. Puttlitz, K.A. Stalter, in Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Springer, New York, 2005), p. 98 Google Scholar
  65. 65.
    M.A. Ali, A.K.M.A. Islam, M.S. Ali, J. Sci. Res. 4, 1 (2012) Google Scholar
  66. 66.
    M.J. Phasha, P.E. Ngoepe, H.R. Chauke, D.G. Pettifor, D. Nguyen-Mann, Intermetallics 18, 2083 (2010) CrossRefGoogle Scholar
  67. 67.
    M. Sundareswari, S. Ramasubramanian, M. Rajagopalan, Solid State Commun. 150, 2057 (2010) ADSCrossRefGoogle Scholar
  68. 68.
    M.A. Ali, M.A. Hadi, M.M. Hossain, S.H. Naqib, A.K.M.A. Islam, Phys. Status Solidi B 254, 1700010 (2017) ADSCrossRefGoogle Scholar
  69. 69.
    M.A. Hadi, M.S. Ali, S.H. Naqib, A.K.M.A. Islam, Chin. Phys. B 26, 037103 (2017) ADSCrossRefGoogle Scholar
  70. 70.
    M.A. Hadi, M.T. Nasir, M. Roknuzzaman, M.A. Rayhan, S.H. Naqib, A.K.M.A. Islam, Phys. Status Solidi B 253, 2020 (2016) ADSCrossRefGoogle Scholar
  71. 71.
    M.A. Hadi, M. Roknuzzaman, A. Chroneos, S.H. Naqib, A.K.M.A. Islam, V. Vovk, K. Ostrikov, Comp. Mater. Sci. 137, 318 (2017) CrossRefGoogle Scholar
  72. 72.
    S.V. Reddy, S.V. Suryanarayana, J. Mater. Sci. Lett. 5, 436 (1986) CrossRefGoogle Scholar
  73. 73.
    J.H. Xu, T. Oguchi, A.J. Freeman, Phys. Rev. B 36, 4186 (1987) ADSCrossRefGoogle Scholar
  74. 74.
    T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J.H. Xu, Phys. Rev. B 41, 12462 (1990) ADSCrossRefGoogle Scholar
  75. 75.
    C.D. Gelatt, Jr. A.R. Williams, V.L. Mourzzi, Phys. Rev. B 27, 2005 (1983) ADSCrossRefGoogle Scholar
  76. 76.
    A. Pasturel, C. Colinet, P. Hicter, Physica B 132, 177 (1985) CrossRefGoogle Scholar
  77. 77.
    I. Galanakis, P. Mavropoulous, J. Phys.: Condens. Matter 19, 315213 (2007) ADSGoogle Scholar
  78. 78.
    C. Paduani, Physica B 393, 105 (2007) ADSCrossRefGoogle Scholar
  79. 79.
    G. Arbman, T. Jarlborg, Solid State Commun. 26, 857 (1978) ADSCrossRefGoogle Scholar
  80. 80.
    T. Jarlborg, A. Junod, M. Peter, Phys. Rev. B 27, 1558 (1983) ADSCrossRefGoogle Scholar
  81. 81.
    K.M. Ho, M.L. Cohen, W.E. Pickett, Phys. Rev. Lett. 41, 815 (1978) ADSCrossRefGoogle Scholar
  82. 82.
    A.T. Van Kessel, H.W. Myron, F.M. Mueller, Phys. Rev. Lett. 41, 181 (1978) ADSCrossRefGoogle Scholar
  83. 83.
    W.E. Pickett, K.M. Ho, M.L. Cohen, Phys. Rev. 19, 1734 (1979) ADSCrossRefGoogle Scholar
  84. 84.
    L.F. Mattheiss, W. Weber, Phys. Rev. B 25, 2243 (1982) ADSCrossRefGoogle Scholar
  85. 85.
    B. Sadigh, V. Ozolins, Phys. Rev. B 57, 2793 (1998) ADSCrossRefGoogle Scholar
  86. 86.
    B.M. Klein, L.L. Boyer, D.A. Papconstantopoulos, Phys. Rev. Lett. 42, 530 (1979) ADSCrossRefGoogle Scholar
  87. 87.
    C. Paduani, Solid State Commun. 144, 352 (2007) ADSCrossRefGoogle Scholar
  88. 88.
    C. Paduani, Physica B 393, 105 (2007) ADSCrossRefGoogle Scholar
  89. 89.
    E.Z. Kurmaev, F. Werfel, O. Brümmer, R. Flükiger, Solid State Commun. 21, 39 (1977) CrossRefGoogle Scholar
  90. 90.
    E.Z. Kurmaev, V.P. Belash, R. Flukiger, A. Junod, Solid State Commun. 16, 1139 (1975) ADSCrossRefGoogle Scholar
  91. 91.
    R.A. Pollak, C.C. Tsuei, R.W. Johnson, Solid State Commun. 23, 879 (1977) ADSCrossRefGoogle Scholar
  92. 92.
    A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983) ADSCrossRefGoogle Scholar
  93. 93.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955) ADSCrossRefGoogle Scholar
  94. 94.
    M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996) ADSCrossRefGoogle Scholar
  95. 95.
    M.A. Hadi, S.-R.G. Christopoulos, S.H. Naqib, A. Chroneos, M.E. Fitzpatrick, A.K.M.A. Islam, J. Alloys Compd. 748, 804 (2018) CrossRefGoogle Scholar
  96. 96.
    M.A. Hadi, S.H. Naqib, S.-R.G. Christopoulos, A. Chroneos, A.K.M.A. Islam, J. Alloys Compd. 724, 1167 (2018) CrossRefGoogle Scholar
  97. 97.
    F. Parvin, S.H. Naqib, Chin. Phys. B 26, 106201 (2017) ADSCrossRefGoogle Scholar
  98. 98.
    P. Barua, M.M. Hossain, M.A. Ali, M.M. Uddin, S.H. Naqib, A.K.M.A. Islam, J. Alloys Compd. 770, 523 (2019) Google Scholar
  99. 99.
    M.A. Hadi, M.A. Alam, M. Roknuzzaman, M.T. Nasir, A.K.M.A. Islam, S.H. Naqib, Chin. Phys. B 24, 117401 (2015) ADSCrossRefGoogle Scholar
  100. 100.
    X. Li, D. Chen, Y. Wu, M. Wang, N. Ma, H. Wang, AIP Adv. 7, 065012 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mosammat I. Naher
    • 1
  • Fahmida Parvin
    • 1
  • Azharul K. M. A. Islam
    • 2
  • Saleh H. Naqib
    • 1
  1. 1.Department of PhysicsUniversity of RajshahiRajshahiBangladesh
  2. 2.International Islamic University ChittagongChittagongBangladesh

Personalised recommendations