Advertisement

Coercive field enhancement in microstructured (La0.4Pr0.6)0.67Ca0.33MnO3 thin films

  • Daniel Grant
  • Michael Ryan
  • Amlan Biswas
Regular Article
  • 18 Downloads
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

The perovskite material (La0.4Pr0.6)0.67Ca0.33MnO3 (LPCMO) has complex electronic and magnetic behavior based on phase competition between ferromagnetic metallic (FMM) and insulating phases with similar free energies. Experimental evidence has indicated that in-plane stress anisotropy influences these phases and can affect electronic and magnetic properties. Here we investigate the roles that both stress and shape anisotropies may play in controlling the coercive field of the material. LPCMO thin films of various thicknesses (20, 25, and 30 nm) were deposited on (110) NdGaO3 (NGO) substrates using pulsed laser deposition and the coercive fields were measured. Photolithography was then used to fabricate microstructured arrays of LPCMO on the NGO substrates for each of the films. The coercive fields of these arrays of LPCMO were compared to the behavior of the corresponding unpatterned LPCMO thin films across a range of temperatures. Microstructure arrays for the thicker (25 and 30 nm) films showed a substantial increase in the coercive field after forming the arrays, whereas a thinner film (20 nm) showed almost no change in the coercive field. Stress anisotropy continues to play a dominant role in the behavior of LPCMO thin films and dimensionality of the magnetic domains also influences the results. The films show 2D behavior when film thickness approaches the size of the critical radius for single-to-multidomain transitions. Making thicker films allows for 3D behavior and a role for shape anisotropy to influence the coercive fields.

References

  1. 1.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature 388, 50 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    J. Tosado, T. Dhakal, A. Biswas, J. Phys.: Condens. Matter 21, 192203 (2009) ADSGoogle Scholar
  4. 4.
    T. Dhakal, J. Tosado, A. Biswas, Phys. Rev. B 75, 092404 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    K. Miyano, T. Tanaka, Y. Tomioka, Y. Tokura, Phys. Rev. Lett. 78, 4257 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    G. Milward, M. Calderon, P. Littlewood, Nature 433, 607 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    H. Pohl, Dielectrophoresis: The Behavior of Natural Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, England, 1978) Google Scholar
  9. 9.
    S. Dong, H. Zhu, J. Liu, Phys. Rev. B 76, 132409 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    H. Jeen, A. Biswas, Phys. Rev. B 88, 024415 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    N. Hill, J. Phys. Chem. B 104, 6694 (2000) CrossRefGoogle Scholar
  13. 13.
    G. Garbarino, C. Acha, P. Levy, T. Koo, S.-W. Cheong, Phys. Rev. B 74, 100401 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    N. Mathur, M. Jo, J. Evetts, M. Blamire, J. Appl. Phys. 89, 3388 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    H. Jeen, A. Biswas, Phys. Rev. B 83, 064408 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Murakami, H. Kasai, J. Kim, S. Mamishin, D. Shindo, S. Mori, A. Tonomura, Nat. Nanotechnol. 5, 37 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    H. Guo, J. Noh, S. Dong, P. Rack, Z. Gai, X. Xu, E. Dagotto, J. Shen, T.Z. Ward, Nano Lett. 13, 3749 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lo, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 71, 2535 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    H.T. Yi, T. Choi, S.W. Cheong, Appl. Phys. Lett. 95, 063509 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A. Hernando, T. Kulik, Phys. Rev. B 49, 7064 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    H. Jeen, Ph.D. thesis, University of Florida, 2011 Google Scholar
  22. 22.
    H. Jeen, R. Javed, A. Biswas, Appl. Phys. A 122, 35 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    E. Kneller, F. Luborsky, J. Appl. Phys. 34, 656 (1963) ADSCrossRefGoogle Scholar
  24. 24.
    B. Cullity, C. Graham, Introduction to Magnetic Materials (IEEE Press, Piscataway, NJ, 2009) Google Scholar
  25. 25.
    Y. Suzuki, H.Y. Hwang, S.-W. Cheong, T. Siegrist, R.B. van Dover, A. Asamitsu, Y. Tokura, J. Appl. Phys. 83, 7064 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    L. Vasylechko, L. Akselrud, W. Morgenroth, U. Bismayer, A. Matkovskii, D. Savytskii, J. Alloys Compd. 297, 46 (2000) CrossRefGoogle Scholar
  27. 27.
    J. Collado, C. Frontera, J. Garca-Muoz, C. Ritter, M. Brunelli, M. Aranda, Chem. Mater. 15, 167 (2003) CrossRefGoogle Scholar
  28. 28.
    M. Ibarra, P. Algarabel, C. Marquina, J. Blasco, J. Garcia, Phys. Rev. Lett. 75, 3541 (1995) ADSCrossRefGoogle Scholar
  29. 29.
    S. Singh, M. Fitzsimmons, T. Lookman, H. Jeen, A. Biswas, M. Roldan, M. Varela, Phys. Rev. B 85, 214440 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    D. Givord, M. Rossignol, D. Taylor, J. Phys. IV 02, C3 (1992) Google Scholar
  31. 31.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949) ADSCrossRefGoogle Scholar
  32. 32.
    A. Bobeck, Bell Syst. Tech. J. 46, 1901 (1967) CrossRefGoogle Scholar
  33. 33.
    V. Basso, C. Beatrice, M. LoBue, P. Tiberto, G. Bertotti, Phy. Rev. B 61, 1278 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    M. Woinska, J. Szczytko, A. Majhofer, J. Gosk, K. Dziatkowski, A. Twardowski, Phy. Rev. B 88, 144421 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of FloridaGainesvilleFLUSA

Personalised recommendations