Advertisement

Correlations and confinement of excitations in an asymmetric Hubbard ladder

  • Anas Abdelwahab
  • Eric Jeckelmann
Regular Article
  • 44 Downloads
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on the two legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.

References

  1. 1.
    A.E. Sikkema, I. Affleck, S.R. White, Phys. Rev. Lett. 79, 929 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    O. Zachar, A.M. Tsvelik, Phys. Rev. B 64, 033103 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    E. Berg, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 105, 146403 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    A. Dobry, A. Jaefari, E. Fradkin, Phys. Rev. B 87, 245102 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    E. Eidelstein, S. Moukouri, A. Schiller, Phys. Rev. B 84, 014413 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    K.A. Al-Hassanieh, C.D. Batista, P. Sengupta, A.E. Feiguin, Phys. Rev. B 80, 115116 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    L. Pan, D. Zhang, H.-H. Hung, Y.-J. Liu, Eur. Phys. J. B 90, 105 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    I.K. Dash, A.J. Fisher, J. Phys.: Condens. Matter 13, 5035 (2001) ADSGoogle Scholar
  9. 9.
    H. Yoshizomi, T. Tohyama, T. Morinari, Prog. Theor. Phys. 122, 943 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 91, 155119 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035445 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035446 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Noack, S.R. White, D.J. Scalapino, Phys. Rev. Lett. 73, 882 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2007) Google Scholar
  15. 15.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Jeckelmann, in Computational Many Particle Physics (Lecture Notes in Physics), edited by H. Fehske, R. Schneider, A. Weiße (Springer-Verlag, Berlin, Heidelberg, 2008), Vol. 739, p. 597 Google Scholar
  18. 18.
    F.H.L. Eßler, H. Frahm, F. Göhmann, A. Klümper, V. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005) Google Scholar
  19. 19.
    R.M. Noack, S.R. White, D.J. Scalapino, Europhys. Lett., 30, 163 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    R.M. Noack, N. Bulut, D.J. Scalapino, M.G. Zacher, Phys. Rev. B 56, 7162 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    N.J. Robinson, F.H.L. Essler, E. Jeckelmann, A.M. Tsvelik, Phys. Rev. B 85, 195103 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    E. Jeckelmann, D.J. Scalapino, S.R. White, Phys. Rev. B 58, 9492 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    A. Jaefari, E. Fradkin, Phys. Rev. B 85, 035104 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ö. Legeza, J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    Ö. Legeza, J. Sólyom, L. Tincani, R.M. Noack, Phys. Rev. Lett. 99, 087203 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    C. Mund, Ö. Legeza, R.M. Noack, Phys. Rev. 79, 245130 (2009) CrossRefGoogle Scholar
  29. 29.
    S.C. Erwin, F. Himpsel, Nat. Commun. 1, 58 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    J. Aulbach, J. Schäfer, S.C. Erwin, S. Meyer, C. Loho, J. Settelein, R. Claessen, Phys. Rev. Lett. 111, 137203 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz Universität Hannover, Institut für Theoretische PhysikHannoverGermany

Personalised recommendations